Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упругость кинетическая

    УПРУГО-КИНЕТИЧЕСКИЕ ПРОЦЕССЫ В МАЛОРАЗЛОЖИВШЕМСЯ ТОРФЕ [c.421]

    Результаты упруго-кинетических исследований торфа, как видно из рис. 1, выявляют при продолжительности нагружения в 5 минут три характерных вида реологических кривых е(/). При напряжении Р< Рк, [c.421]

    Упруго-кинетические процессы 423 [c.423]

    Упруго-кинетические процессы 425 [c.425]

    Однако механической переработке свойственно, как известно, явление затухания диспергирующего эффекта. Вместе с тем, для каждого вида торфа имеется определенное оптимальное соотношение между растительными остатками и продуктами распада, нарушение которого отрицательно сказывается на качестве готовой торфяной продукции. Что касается химического диспергирования, то оно, не затрагивая по существу растительные остатки, воздействует на его коллоидно-высокомолекулярную составляющую [10]. Упруго-кинетические процессы в результате этого протекают с другими остаточными деформациями (рис. 2). Кинетика их развития определяется количеством и составом вводимого химического реагента. [c.426]


    Упруго-кинетические процессы 427 [c.427]

    Таким образом, механическое диспергирование и действие добавок электролитов существенно изменяют упруго-кинетические свойства торфа, что можно использовать для проектирования оптимальной технологии торфяного производства. [c.428]

    Очевидно, что фронт движения жидкости в прорези пройдет расстояние ДА и остановится в тот момент, когда завершится переход кинетической энергии движения в потенциальную энергию упругого сжатия. Тогда объем жидкости ДУ = - ДА) будет обладать наибольшей потенциальной энергией, которая впоследствии перейдет в энергию ударной волны. [c.66]

    Здесь не учитывается внутренняя анергия молекул. Это вполне допустимо, если предполагать, что возможны только идеально упругие столкновения между молекулами (т. е. если при столкновениях не происходит изменения суммарной кинетической энергии). [c.128]

    Поскольку число столкновений огромно, а большинство реакций протекает медленно, очевидно, что не каждое столкновение приводит к реакции. Вероятно, при соударениях реагируют только те молекулы, которые обладают избыточной энергией, превышающей некоторую критическую величину, называемую энергией активации. Обычно эти активные молекулы составляют лишь очень незначительную долю от общего их числа. По ряду соображений полагают, что отдельные молекулы газа отличаются друг от друга скоростью теплового движения и, следовательно, своей кинетической энергией. Это будет справедливо в том случае, если столкновения молекул являются более или менее упругими, так как после упругих соударений одни молекулы будут увеличивать свою скорость, а другие—уменьшать. [c.39]

    Обмен кинетическими энергиями при упругом ударе [c.72]

    Задача о частоте тройных столкновений, т. е. столкновений, в которых принимают участие одновременно три молекулы, требует предварительного определения длительности двойного столкновения. Дело в том, что если рассматривать молекулы как идеальные упругие шары, а именно из этого исходит элементарная кинетическая теория газов, то двойное столкновение мгновенно, и вероятность участия в нем еще и третьей частицы равна нулю. Задачу можно решить приближенно, если отка- [c.114]

    Соударения молекул газа упруги. Это значит, что, хотя отдельные частицы могут менять свою кинетическую энергию, суммарная энергия сталкивающихся частиц постоянна. [c.392]

    Пленочное течение. Особенности кинетических процессов в смачивающих пленках связаны с подвижностью поверхности пленки, граничащей с газовой фазой. Если в тонких порах локально-действующее расклинивающее давление уравновешивается упругими напряжениями в твердой фазе пористого тела, то в смачивающих пленках градиент расклинивающего [c.26]


    Если каждая молекула газа движется независимо от остальных все время, за исключением моментов столкновений, и если эти столкновения являются упругими, то в смеси различных газов их суммарная кинетическая энергия должна быть равна сумме кинетических энергий индивидуальных газов  [c.144]

    Молекулярно-кинетическая теория газов позволяет успешно объяснить свойства идеального газа на основе минимального числа исходных предположений, а также дает возможность понять причину отклонений свойств реальных газов от идеального поведения. В своей простейшей форме молекулярно-кинетическая теория исходит из предположений, что газ состоит из невзаимодействующих молекул, которые могут рассматриваться как точечные массы и находятся в состоянии постоянного движения, прерываемого лишь упругими столкновениями друг с другом и со стенками сосуда. Когда мы хотим распространить эту теорию на реальные газы, приходится учитывать, что молекулы имеют конечный объем и что между ними действуют силы взаимного притяжения. [c.156]

    Формирование поля скоростей происходит под воздействием поступающего в -й элементарны объем ДУ газового потока, энергия которого обозначена на диаграмме связи элементом 8р. Энергия уходящего газового потока обозначена элементом Изменение кинетической энергии газа отображено узлом О и С-элементом, с которыми связаны упругие свойства газового потока. Затраты энергии на сопротивление слоя потоку газа изображены на диаграмме узлом 1 и Л-элементом, который является обобщенным коэффициентом трения. Передача импульса энергии газового потока твердым частицам представлена ТР-элементом с коэффициентом передачи 8р 8р — суммарное лобовое сечение частиц -го элементарного объема. Элемент 1, отображающий инерционные свойства движущегося материала, и 5 -элемент, соответствующий затратам энергии на преодоление силы тяжести с учетом силы Архимеда, объединены единичным узлом. Согласно методике составления уравнений по диаграмме связи аналитическая форма баланса энергии для Д имеет вид [c.231]

    Выражение для длины свободного пробега, кот( ое выводится в элементарной кинетической теории газов, исходя из представления о молекулах как об упругих сферах диаметра имеет вид [c.99]

    Прочность полимерных материалов приобретает все более актуальное значение. До появления кинетической точки зрения на разрушение полимеров придерживались представлений о разрушении исключительно с позиций механики упругих твердых тел, имеющих дефекты. Однако экспериментальные факты [33—36] доказывают существенную роль вязкоупругих релаксационных явлений при разрушении полимеров. В этой связи построение математической модели кинетики набухания, учитывающей релаксационные явления в полимере, актуально для нахождения благоприятных условий проведения процесса с целью уменьшения брака при производстве ионообменных материалов аналитического назначения (хроматографического и ядерного класса). При этом описание релаксационных явлений в полимерных материалах связывается с рассмотрением их как сплошных сред, которые по своим механическим свойствам занимают промежуточное положение между упругими твердыми телами и вязкими жидкостями (что приводит к возникновению явлений вязкоупругости). [c.300]

    Построенная модель процесса набухания использовалась сначала для поиска реологических характеристик системы сополимер — растворитель модулей упругости Ей и кинетической ползучести X. Для проверки адекватности модели использовались экспериментальные данные по движению оптической и фазовой границ. Затем при известных значениях Еш и у. модель рассчитывалась для определения параметров состояния системы в процессе ее набухания. Результаты расчета представлены на рис. 4.13— 4.17. [c.322]

    Проверка адекватности модели кинетики набухания осуществлялась на основании экспериментальных данных о положении оптической и фазовой границ. Для проверки адекватности использовался средний квадрат отклонения между экспериментальными и расчетными данными положения оптической и фазовой границ. Результаты проверки показывают, что моделирование деформации механических свойств полимера в процессе его ограниченного набухания, основанное на представлении системы сополимер — растворитель как сплошной среды с одним внутренним релаксационным процессом, вполне допустимо (погрешность не превышает +9%). Параметрами реологических уравнений являются модуль упругости среды и кинетический коэффициент ползучести, характеризующий внутреннюю подвижность макроцепей сополимера. Наряду с этим предлагаемая модель допускает (при необходимости) дальнейшее уточнение характеристик среды на основе более углубленного исследования реологических свойств системы сополимер — растворитель . [c.328]


    Плотность углеводородных жидкостей. Плотность различных нефтей можно найти в стандартных таблицах. Однако, если нефть содержит значительное количество примесей с высокой упругостью паров (метан, этан, азот), то эти таблицы применять нельзя. Молекулы веществ, имеющих высокую упругость паров, обладают значительной кинетической энергией, которая влияет па плотность смеси. Для определения плотности жидких углеводородов с относительной молекулярной массой ниже 33, молярная доля азота, кислорода и изо-парафинов в которых менее 5%, моишо воспользоваться формулой, которая применима в интервале температур —(140+-184,4)° С, [c.37]

    Природа высокоэластичного состояния хорошо характеризуется кинетической теорией упругости каучука. Согласно основным представлениям этой теории, при растягивании каучука происходит распрямление и сближение цепей, в то время как тепловое движение частиц, и в частности в.кг/мп вращение отдельных звеньев цепей, проти- [c.574]

    Удар рабочего органа по дробимому куску, как и удары при соударении кусков между собой, являются на вполне упругими, и часть кинетической энергии, которую тела имели до момента удара, затрачивается на их необратимую деформацию. Экспериментально установлено, что дробление материала возможно лишь при определенном минимуме передаваемой энергии и имеется связь между [c.183]

    На отрезке — к молекулы А и В не взаимодействуют между собой, поэтому Е, Е% и Ег остаются постоянными. В момент и молекулы подходят на расстояния, на которых начинают проявляться межмолеку-лярные силы притяжения Ван-дер-Ваальса (3-5- 10 1 м). На этих расстояниях интегралы перекрывания МО практически равны нулю. Энергетическое возмущение электронов невелико. При дальнейшем сближении молекул происходит перекрывание МО. Если на МО находятся по два электрона, между ними возникают силы отталкивания, обусловленные принципом Паули. Дальнейшее сближение молекул приводит к изменению расположения ядер и электронной плотности в молекулах. При сближении молекул А и В, когда силы притяжения между молекулами преобладают над силами отталкивания, внутренняя энергия понижается, энергия поступательного движения молекул возрастает. Когда начинают преобладать силы отталкивания, а молекулы А и В в силу инерции продолжают сближаться, кинетическая энергия 2 поступательного движения молекул по линии, соединяющей их центры, уменьшается, внутренняя энергия Ез возрастает. На рис. 186 кривая 1 отражает изменение Е-1 и Еъ при чисто упругом столкновении кривая 2 — столкновение, при котором доля кинетической энергии поступательного движения, переходящая во внутреннюю энергию, невелика, и молекулы разлетаются с незначительно повышенной внутренней энергией кривая 5 характеризует изменение внутренней энергии при столкновениях, когда происходит значительное увеличение внутренней энергии Ел. Вероятность таких столкновений невелика. При столкновениях, заканчивающихся значительным увеличением внутренней энергии, расположение ядер атомов и распределение электронной плотности в молекулах А и В существенно меняется. Когда внутренняя энергия реагирующих молекул достигает максимума (интервал Д/), рас-. [c.560]

    Современная теория теплообмена и гидродинамика базируются на мысленной схеме, согласно которой свойства среды можно описывать так, как будто она состоит не из отдельных молекул, а является сплошной, и ее характеристики (скорости, температуры и т. д.) меняются непрерывно от точки к точке. Молекулярно-кинетическая теория газов, напротив, основана на представлении среды, состоящей из отдельных молекул. При этом мысленная модель идеаль,ного газа предполагает, что молекулы можно рассматривать как отдельные щарики, не взаимодействующие друг с другом иначе, чем путем взаимных упругих соударений. [c.263]

    Продукты распада торфа и его неразложившаяся часть образуют сложный комплекс, который существует, главным образом, благодаря водородным связям. Поэтому деформация такого комплекса связана со взаимным перемещением его звеньев, зачастую без разрушения структуры. Внешне упруго-кинетические процессы в торфе напоминают кинетику развития деформации при постоянном напряжении в твердообразных условно-пластичных системах [1, 2]. Анализ графиков, представленных на рис. 1, подтверждает это. Полная деформация е состоит из условно-мгновенной ео, развивающейся и спадающей почти мгновенно эластичной 82, развивающейся и спадающей во времени, и необратимой (остаточной) деформации Бост, т. е. деформации течения. Запись кривых кинетики развития деформаций производилась на приборе конструкции Д. М. Толстого [3—6]. [c.421]

    При помощи этого, а также ряда других методов удалось не только подтвердить сам факт обмена ионами, но и количественно оценить его. Поскольку в обмене участвуют заряженные частицы, то его интенсивность можно выразить в токовых единицах и охарактеризовать токами обмена / . Токи обмена относят к I см2 (I и ) поверхности раздела электрод — раствор они служат кинетической характеристикой равновесия между электродом и раствором при равновесном значении электродного потенциала и обозначаются / . Одни из первых работ по определению токов обмена были выголнены В. А. Ройтером с сотр. (1939). Значения токов обмена для ряда электродов приведены в табл. 10.2. Интенсивность обмена зависит от материала электрода, природы реакции и изменяется в широких пределах. По третьему принципу осмотической теории Нернста токи обмена возникают в результате существования сил осмотического давления раствора и электролитической упругости растворения металла. [c.218]

    Соотношение (2.2) можно переписать в виде /ф = 2а + 1, где — длина дуги, которую пробегает ротор в запертом состоянии. Здесь эта величина назьшается дугой преобразования энергии. Величина этой дуги должна выбираться по некоторым правилам, которые определяются исходя из следующих соображений. При резком перекрытии проходного сечения канала движения потока сплошной среды, согласно теории прямого гидравлического удара Жуковского [391], происходит преобразование кинетической энергии некоторого объема жидкости в потоке в потенциальную энергию упругой деформации этого объема. После завершения этого преобразования начинается процесс релаксации в форме распространения в жидкости ударной волны. Применение этой концепции к единичной прорези ротора дает следующий вьтод длина дуги преобразования должна бьтгь не меньше длины углового расстояния, проходимого ротором, на протяжении которого будет завершен цикл преобразования кинетической энергии объема жидкости, равного объему прорези ротора, в потенциальную энергию упругого сжатия этого объема при перекрытии этой прорези телом статора. Время, в течение которого такое преобразование происходит, назовем временем подготовки прорези к излучению. [c.65]

    Структурный граф (СТГ) ХТС — это топологическая модель, отражающая при анализе гадравлических и тепловых процессов взаимосвязь некоторых простых идеальных компон бнт системы (источники потенциальной и кинетической энергии, резисторы или, сопротивления, раоовивающие энергию ТС емкости, накапливающие вещество или энергию ХТС и характеризующие свойство упругости вещества индуктивности, характеризующие инерционный эффект массы в движущемся потоке вещества). [c.45]

    Эти необратимые потери компенсируются энергией вынуждающей силы (управляющего газового потока), преобразованной в перестановочное усилие Под действием Р масса штока М1 приходит в движение, что и обусловливает наличие элемента инерционности (1-элемент) в фрагменте диаграммы связи. Таким образом, инерционный элемент I отражает аккумуляцию кинетической энергии (эффект массы М1) С-элемент отражает аккумуляцию энергии упругости пружины. Параметром этого элемента является податливость пружины 8(,2-элемент характеризует действие суммы усилий неуравновешенности статического давления среды на затвор и давления среды на шток. Рассмотренный фрагмент диаграммы связи отражает затраты энергии на непрерывное функционирование ПМИМ (рис. 3.62). [c.280]

    Кинетические уралпения неравновесных реакций, так же как и уравнения релаксации, строятся па основе баланса числа частиц в заданном квантовом состоянии. К переходам между квантовыми состояниями без реакции (псунругие и упругие столкновения) добавляются переходы, сопровождающие реакцию. В результате получается система уравнений, которая описывает как приб.нижение к химическому равповвсию, так и релаксацию функции распределения по энергиям. Для простоты мы ограничимся рассмотрением начал 1.ных стадий реакций, когда обратными реакциями можно пренебречь. [c.49]

    Если при столкновении молекул происходит обмен только поступательной энергией, а внутренние состояния партнеров но меняются, то такой процесс полностью описывается дифференциальным сечением упругого рассеяния (/ ( ). Угол й характеризует изменение направления вектора относительной скорости в результате столкновения (величина скорости остается, разумеется неизменной). Связанное с илменением направления относительной скорости изменение кинетической энергии каждого партнера по столкновению можно найти, переходя от системы центра инерции к лабораторной системе координат 180]. [c.79]

    Заметим, что для соударения упругих шаров из-за неблагоприятного соотношения масс доля кинетической энергии электрона, переходящая в колебательную (и вращательную) энергию молекулы, ничтожно мала поэтому с точки зрения этой модели при электронном уд р(1 не должно иметь места ни возбуждение колебаний, пи вращение молекуль. (имеются в виду медленные электроны). Наблюдаемое возбузкдение колебаний указывает па неприменимость простой механической модели к этому процессу. Франк [283] предложил механизм возбуждения колебаний молекулы лри электронном ударе, в основе которого лежит представление о том, что электрон прн сближении с молекулой сильно искажает ее внутреннее поле и тем самым изменяет взаимодействие атомов в молекуле, вследствио чего и может произойти изменение ее колебательного состояния. [c.176]

    Теория упругих столкновений ионов с молекулами при малых энергиях была разработана ощо в 1905 г. Ланягевеном. Оказалось, что из-за дально-действующих поляризационных сил между ионом и наведенным диполем молекулы при некотором параметре удара, значительно превосходящим при ма.тых кинетических энергиях газокинетические 1)адиусы соответствующих нейтральных частиц, происходит захват иона на орбиту, приводящую к тесному сближению частиц. Сечение такого поляризационного захвата определяется формулой Ланжевена [c.192]

    Еще одним видом непроизводительных реакций является упругое рассеяние. При упругом рассеянии падающий нейтрон после столкновения с ядром-мишенью имеет иную кинетическую энергию, чем перед столкновением. Однако кинетическая общая энергия частиц перед столкновением и после него одинакова. По феноменологической точке зрения взаимодействие нейтрона с ядром при упругом рассеянии имеет черты как реакции захвата , так и реакции типа отклонения (defle tion). [c.15]

    Упругое соударение нейтронов с тян<елыми ядрами горючего вызывает лишь небольшие изменения кинетической энергии нейтронов. Поэтому реакции упругого рассеяния представляют большой интерес лишь при рассмотрении взаимодействия нейтронов с нетопливными компонентами реактора. Таким образом, две обобщенные характеристики — относительная вероятность реакции с делением в реакциях, связанных с захватом нейтрона, и число нейтронов, приходящихся на одно деление,— определяют достоинства и пригодность делящегося материала для использования его в качестве горючего. [c.15]

    Методы измерения сечений отдельных нейтронных реакций значительно более сложны и здесь не обсуждаются. Сечения для тепловых нейтронов обычно относят к сечениям взаимодействия нейтронов, кинетическая энергия которых соответствует равновесной температуре материала. Обычно эта температура принимается равной 20° С (0,025 эв). Соответствующая скорость нейтронов составляет 2200 м1сек. Поперечные сечения поглощения, упругого рассеяния и деления в тепловой области для некоторых материалов реактора приведены в табл. 2.2 [10]. В ней также приводится плотность материалов при температ/ре 20° С. [c.35]


Смотреть страницы где упоминается термин Упругость кинетическая: [c.135]    [c.49]    [c.309]    [c.421]    [c.577]    [c.554]    [c.574]    [c.39]    [c.49]    [c.50]   
Физико-химия полимеров 1963 (1963) -- [ c.160 ]




ПОИСК







© 2025 chem21.info Реклама на сайте