Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ван-дер Ваальса дисперсионные

    Силы Ван-дер-Ваальса складываются из следующих сил взаимодействия ориентационных, индукционных и дисперсионных. [c.16]

    Силы Лондона — Ван-дер-Ваальса, возникающие между отдельными атомами, проявляются на очень малых расстояниях порядка атомных размеров. При взаимодействии коллоидных частиц вследствие аддитивности дисперсионных сил взаимодействие между частицами проявляется на значительно больших расстояниях. [c.416]


    Особенностью дисперсионного взаимодействия является его всеобщность, так как во всех молекулах есть движущиеся электроны. Дисперсионное взаимодействие для неполярных молекул —главный и практически единственный источник сил Ван-дер-Ваальса. Дисперсионное взаимодействие вносит известный вклад также в энергию ионной связи в молекулах и кристаллах. [c.134]

    Между неполярными молекулами действует особый вид сил Ван-дер-Ваальса — дисперсионные или лондоновские силы. Причина возникновения этих сил объяснена физиком-теоретиком Лондоном (1927 г.) следующим образом. Рассмотрим две очень близко расположенные друг, к другу неполярные молекулы.  [c.94]

    Эти процессы происходят под действием сравнительно слабых межмолекулярных сил притяжения — сил Ван дер Ваальса, имеющих электростатическую природу. Общая анергия взаимодействия молекул адсорбата и адсорбента складывается из энергии дисперсионных, индукционных и ориентационных сил, а иногда и энергии специфического взаимодействия (водородная связь, донорно-акцепторное взаимодействие). [c.15]

    Физическая адсорбция - это взаимодействие молекул с поверхностью твердых тел с помощью сил Ван-дер-Ваальса (дисперсионных, индукционных и ориентационных). Физическая адсорбция - обратимый процесс. [c.685]

    Образование клатратов в первую очередь зависит от величины и формы полостей в структуре хозяина и от формы и величины частиц гостя . Химические связи между хозяином и гостем практически не проявляются. Главную роль здесь играют силы Ван-дер-Ваальса (дисперсионное взаимодействие). [c.292]

    Совершенно ясно, что источником всех молекулярных и атомных сил является в конечном счете взаимодействие составных частей атомов, а именно ядер и электронов. Все эти силы могут быть выведены теоретически при помощи основных уравнений волновой механики. Однако удобно рассматривать различные виды взаимодействия атомов независимо друг от друга, подобно тому, как это делается в других областях физики и химии. Поэтому, следуя общепринятому методу, мы будем рассматривать в качестве различных и независимо действующих такие силы, как неполярные силы Ван-дер-Ваальса (дисперсионные силы), силы электростатической поляризации атомов или молекул ионами или диполями, кулоновские силы взаимного притяжения или отталкивания между ионами и диполями, обменные силы, приводящие к возникновению ковалентных связей, силы отталкивания, возникающие вследствие взаимного проникновения электронных облаков (с учетом принципа Паули), и т. д. [c.22]

    Третьим источником сил Ван-дер-Ваальса может быть взаимное притяжение колеблющихся электронов квантово-механического характера (дисперсионный эффект). Оно может появляться у молекул, построенных симметрично и лишенных дипольного момента. [c.11]


    Теоретические основы. Очистка основана на способности полярных растворителей преимущественно растворять полициклические ароматические углеводороды и смолистые соединения, наличие которых в масле нежелательно. Основную роль в процессах селективной очистки играют силы Ван-дер-Ваальса (ориентационные, индукционные, дисперсионные), обеспечивающие взаимодействие полярных молекул растворителя с полярными или поляризуемыми молекулами сырья. [c.211]

    Из (11.4) следует, что рекомбинация по этому механизму предпочтительна, когда е велика и не зависит от числа эффективных степеней свободы, т. е. от сложности посторонних молекул. Величина е, зависящая от типа связи в RM, может быть обусловлена дисперсионным, ионным или ковалентным взаимодействием. Предполагая, что связь между частицами в комплексе является ван-дер-ваальсо-вой, выразим взаимодействие между ними потенциалом Ленарда — Джонса [193]. [c.118]

    Анализ формулы (49.17) для U показывает, что ориентационная энергия значительна только для сильно полярных молекул, индукционная энергия обычно очень мала, и наиболее важным слагаемым в (49.17) является дисперсионная энергия (табл. 29). Особая важность дисперсионного взаимодействия в том, что нет веществ, в которых оно не проявлялось бы, и в аддитивности дисперсионных сил. Так как силы Ван-дер-Ваальса вызывают отклонение состояния газов от идеальности, то константы уравнения Ван-дер-Ваальса [c.262]

    Ваальса ). Относительное значение каждого вида для того или иного случая зависит в основном от двух свойств взаимодействующих молекул — их полярности и деформируемости. Чем выше полярность, тем значительнее роль ориентационных сил, чем больше деформируемость, тем значительнее роль сил дисперсионных. Индукционные силы зависят от обоих факторов, но сами играют лишь второ- [c.104]

    Сжиженные инертные газы неон, аргон, криптон и ксенон являются простейшими по своим свойствам и типу межатомного взаимодействия жидкостями. Интерес к изучению их структуры связан с необходимостью дальнейшего развития теории жидкого состояния. Для этих веществ теоретические расчеты физических величин можно сделать более количественными, чем для других жидкостей. Притяжение атомов у сжиженных инертных газов описывается дисперсионными силами Ван-дер-Ваальса. Эти силы имеют квантовую природу. Своим существованием они обязаны нулевой колебательной энергии атомов. Не будь ее, нельзя было бы осуществить сжижение инертных газов, не существовало бы в природе парафинов, полимеров и многих других веществ с неполярными молекулами. Предпосылкой для появления дисперсионных сил является динамическая поляризуемость атомов и молекул, возникновение у них мгновенных диполей благодаря вращению электронов вокруг ядра. Электрическое поле такого диполя одной молекулы индуцирует дипольный момент в окружающих молекулах, что и приводит к появлению сил притяжения. [c.152]

    Большая разница в теплотах испарения различных молекулярных веществ, изменяющаяся в связи с изменением температуры кипения (табл. 10), свидетельствует о неоднородности сил Ван-дер-Ваальса. Три вида взаимодействий объединяются под названием сил Ван-дер-Ваальса ориентационное, индукционное и дисперсионное. [c.112]

    Рассмотрим зависимость от расстояния энергии притяжения частиц — молекуляриой составляющей расклинивающего давлс ния. Из сил Ван-дер-Ваальса наиболее универсальными и существенными силами притяжения являются лондоновские силы дисперсионного взаимодействия. Как уже отмечалось, дисперсионное взаимодействие слабо экранируется, и поэтому взаимодействие между частицами легко определить суммированием взаимодействий между молекулами или атомами в обеих частицах, например, с помощью интегрирования. Такой приближенный расчет в предположении аддитивности межмолекулярных (межатомных) взаимодействий был проведен де Буром и Гамакером. Для вывода уравнения энергии молекулярного притяжения между частицами воспользуемся уравнением энергии притяжения одной молекулы (атома) к поверхности адсорбента (в данном случае частицы), приведенном в разд. III. А, посвященном адсорбции (111.6)  [c.328]

    Особенностью дисперсионного взаимодействия является его всеобщность — во всех молекулах есть движущиеся электроны, поэтому дисперсионное взаимодействш существенно для всех без исключения молекул. Дисперсионное взаимодействие для неполярных молекул — главный и практически единственный источник сил Ван-дер-Ваальса. Дисперсионное взаимодействие вносит известный вклад также в энергию ионной связи в молекулах и кристаллах. [c.260]

    Свойства веществ обусловливаются не только внутримолекулярными, но и межмолекулярными взаимодействиями. Межмолекулярные взаимодействия проявляются в процессах конденсации, растворения, сжатия реальных газов и т. д. и называются силами Ван-дер-Ваальса. Они отличаются от химических сил взаимодействия тем, что имеют электрическую природу, проявляются на значительно больших расстояниях, характеризуются небольшими энергиями (10—20 Дж/моль), а также отсутствием насыщаемости и специфичности. Энергия химических сил в 7—10 раз больше межмолекулярных. Как показывают квантово-механические расчеты, энергия ван-дер-ваальсова взаимодействия слагается из электростатической, индукционной и дисперсионной энергией. [c.235]


    При магнитной обработке водных сред, по мнению А. X. Мир-заджанзаде, С. Н. Колокольцева, А. Л. Бучаченко, Р. 3. Сагдеева, К. М. Салихова, сравниться с энергией теплового движения и упорядочить внутреннюю структуру могут только структурные химические связи, которые характеризуются взаимодействием двух или нескольких атомов. Они обусловливают образование устойчивой многоатомной системы и сопровождаются существенной перестройкой электронных оболочек связывающих атомов. При этом необходимо учитывать динамику процесса, ведь все электронные орбиты, составляющие оболочку, непрерывно совершают колебательные движения. Чтобы существовала устойчивая и стабильная связь атомов, необходима определенная корреляция в движении электронов, то есть колебания электронных орбит взаимодействующих атомов должны быть синхронны. Синхронность колебаний электронов в атомах свидетельствует о наличии дисперсионного взаимодействия между атомами. Дисперсионные силы имеют электромагнитную и квантовую природу и являются одной из разновидностей межмолекулярного взаимодействия, называемого силами Ван-дер-Ваальса. Дисперсионные силы возникают в результате колебаний электронов соседних атомов или молекул в одинаковой фазе, при этом взаимное притяжение приводит к сближению этих атомов или молекул и образованию между ними связи. [c.36]

    В 1930 г. Лондон [1,2] показал, что существует еще один тип электрических сил межатомного взаимодействия, которые следует охарактеризовать более подробно. Эти силы стали известны как дисперсионные силы или силы Лоидо иа—Ваи-дер-Ваальса. Дисперсионные силы являются силами. притяжения. Они возникают вследствие того, что даже нейтральные атомы представляют собой системы колеблюииьхся зарядов вследствие наличия положительного ядра и отрицательно заряженных электронов. Теорию Лондона вкратце можно изложить следующим образом. Энергия атома 1 в поле Р равна [c.248]

    Второй путь образования двойного слоя заключается в том, что поверхностные молекулы частиц твердой фазы диссоциируют в жидкости на ионы. Например, метакремниевая кислота НгЗЮз отдает в раствор ион водорода, в результате на поверхности остаются потенциалообразующие ионы с отрицательным зарядом. Из ионов водорода на твердой поверхности возникает адсорбционный слой, который имеет положительный заряд. Наконец, возможна специфическая адсорбция из жидкой фазы на электрически нейтральных поверхностях некоторых минералов [43]. Она обусловлена дисперсионными силами Ван-дер-Ваальса или Лондона, которые зависят от электрической поляризации атомов твердой поверхности пор ионами жидкости и поляризации самих ионов. При этом адсорбируются в первую очередь многозарядные ионы. Этот механизм возможен, например, в известняках. Вообще же примеры таких схем мало изучены. Независимо от пути образования двойной электрический слой имеет одну и ту же структуру. [c.112]

    Силами притяжения, наиболее часто принимающими участие в физической адсорбции, являются неполярные силы Ван-дер-Ваальса. Поскольку же, согласно Лондону [22], между природой этих сил и природой чех факторов, которые вызь(вают дисперсию света, существует близкая связь, эти силы можно назвать также дисперсионными силами. Возннк1[ов< Ине неполярных сил Ваи-дер-Ваальса обусловлено главным образом взаимоде -ствиел) постоянно изменяющихся индуктирующих диполей и индуцированпых диполей. Энергия такого взаимодействия двух атомов обратно пропорциональна шестой сгепени расстояния  [c.29]

    Классификация по межфазному взаимодействию. На границе раздела фаз всегда проявляется взаимодействие между веществами дисперсной фазы и дисперсионной среды за счет межфазной свободной энергии (нескомпенсированных сил Ван-дер-Ваальса), но степень его проявления у различных веществ различна. В зависимости от этого дисперсные системы могут быть лиофильными (1уо — растворяю рЬ11ео — люблю) или лиофобными (рЬоЬоз — страх). Для первых характерно сильное межмолекулярное взаимодействие вещества дисперсной фазы со средой, а для второй — слабое. Это взаимодействие приводит к образованию сольватных (гидратных, если средой является вода) оболочек вокруг частиц дисперсной фазы. [c.72]

    Фикенчер и Марк для учета влияния сольватации предложили модифицировать уравнение Эйнштейна, введя в него соответствующую поправку. Согласно этим авторам, в уравнении Эйнштейна, так же как и в уравнении Ван-дер-Ваальса, вместо общего объема системы следует ввести эффективный объем, т.е. объем системы за вычетом объема частиц. Так как частицы в системе находятся в сольватированном состоянии и, кроме того, совершают броуновское движение, описывая некие тела вращения, то объем дисперсионной среды, энергетически и стерически связанной с частицами, также следует причислить к объему дисперсной фазы. Тогда уравнение (X, 18) примет вид  [c.338]

    Влияние полярности НЖФ на селективность и порядок разделения компонентов обусловлено соотношением вклада сил межмолекулярного взаимодействия сорбата с НЖФ в общую энергию этого вза-кмодействия. Межмолекулярные силы (когезионные силы Бан-дер-Ваальса) имеют электростатическую природу. Они подразделяются на ориентационные, индукционные и дисперсионные. [c.192]

    К силам притяжения, действующим между молекулами, относятся силы Ван-дер-Ваальса, имеющие общую элект ромаг-нитную природу. Ван-дер-ваальс01вы взаимодействия принято считать да льнодействующим и, слабыми, объемными, коллективными и универсальными. В общем случае ван-дер-вааль-сово взаимодействие складывается из трех эффектов ориентационного (или диполь-дипольного), индукционного (диполь-наведенный диполь) и дисперсионного ( лондоновское взаимодействие)  [c.9]

    Второй род сил, влияющих на устойчивость золя,— силы притяжения между частицами. Они имеют ту же природу, что и силы, действующие между нейтральными молекулами. Существованием этих сил Ван-дер-Ваальс объяснял свойства реальных газов и жидкостей. Возникновение межмолекулярных сил обусловлено взаимодействием диполей (эффект Кеезома), поляризацией одной молекулы другой (эффект Дебая) и особого рода взаимодействием, которое объяснимо в рамках квантовой механики. Последний тип сил, называемых дисперсионными силами Лондона, связан с наличием в нейтральных атомах и молекулах мгновенных диполей. Взаимодействие таких диполей, являющихся результатом движения электронов в атомах и молекулах, не зависит от постоянных диполей и служит причиной их взаимного притяжения. Ф. Лондон показал, что такой тип взаимодействия превосходит эффекты Кеезома и Дебая. Энергия лондонозского взаимодействия между двумя атомами, находящимися на расстоянии г, обратно пропорцио- [c.112]

    В узлах молекулярных кристаллических решеток расположены молекулы, ковалентного типа, например СОа (рис. 5.24), связанные между собой силами Ван-дер-Ваальса. Когда из сил Ван-дер-Ваальса действуют только (или в основном) дисперсионные силы, которые обладают шаровой симметрией воздействия, то образующиеся кристаллы имеют гранецентриро-вапную кубическую решетку (см. рис. [c.137]

    В табл. 22 приведены состасляющие сил Ван-дер-Ваальса для некоторых веществ. Эти данные свидетельствуют о том, что а) дисперсионный эффект велик и играет основную роль для неполярных и малополярных молекул б) для сильно полярных молекул вклад ориентационного эффекта является большим и в) нн-дукцпонный эффект обычно не очень существен. Он становится значительным лишь тогда, когда полярные молекулы сосуществуют с сильно поляризуемыми молекулами. Так, нитробензол в результате поляризационного взаимодействия образует с нафталином молекулярное соединение СвНзМОа-0(01-18. Подобного рода соединений известно очень много. [c.242]

    Модель Лондона позволяет определить среднее статическое всех таких взаимодействий, получившее название дисдерсиш11шй-евета --ляюш,ей сил Ван-дер-Ваальса. Пользуясь квантовомехани ческими -нр дставлсшн -ми- —Лондон вывел -уравнение для" расчета дисперсионных сил  [c.67]

    Ван-дер-ваальсовы взаимодействия. Представление об этих силах было, введено голландским физиком Ван-дер-Ваальсом для объяснения различия в поведении реального и идеального газов. Природа этих взаимодействий также электрическая, поэтому они наиболее значительны при наличии у взаимодействующих молекул электрических моментов диполя (так называемые диполь-дипольные взаимодействия). Силы взаимодействия между неполярными молекулами более слабы, они образуются за счет мгновенных (наведенных) диполей, вызванных непрерывным тепловым движением частиц в атомах и в веществе. Такие взаимодействия называются дисперсионными силами. Например, между молекулами инертных элементов, в которых все валентные орбитали полностью заселены и ядра свободных атомов газа находятся довольна далеко друг от друга, возникают слабые взаимодействия. [c.32]

    Вандерваальсовы силы. Слабые взаимодействия между нейтральными молекулами, проявляющиеся на расстояниях, превосходящих размеры частиц, были впервые обнаружены голландским ученым Ван-дер-Ваальсом. В связи с этим силы, вызывающие подобного рода взаимодействия, называют вандерваальсо-выми силами. Силам Ван-дер-Ваальса приписывают электростатическую природу. Обычно в зависимости от природы системы выделяют три составляющие вандерваальсовых сил ориентационную, индукционную и дисперсионную. [c.57]

    Все три типа межмолекулярного взаимодействия — ориентационное, индукционное и дисперсионное — часто называют в а и -дер-ваальсовыми силами. Так они названы в честь голландского физика Ван-дер-Ваальса, который впервые принял их во внимание для объяснения свойств реальных газов (уравнение Ван-дер-Ваальса). [c.53]

    Выделяют следующие составляющие дальнодействующих сил ттритяжения между молекулами (сил Ван-дер-Ваальса) ориентационная составляющая ор индукционная составляющая ипд дисперсионная составляющая Идисп- [c.274]

    Силы Ван-дер-Ваальса (ориентационный, индукционный и дисперсионный эффекты). Очень слабые силы притяжения между нейтральными атомами или молекулами, проявляющиеся на расстояниях, превосходящих размеры частиц, называют межмолеку лярным притяжением или силами Ван-дер-Ваальса . Они действуют в веществах, находящихся в газообразном или жидком состоянии, а также между молекулами в молекулярных кристаллах. Своа название они получили по имени голландского исследователя Ван-дер-Ваальса, постулировавшего их существование введением поправочного члена в уравнение состояния идеального газа. Эти силы обусловливают отступление реальных газов от идеального состояния. Кроме того, межмолекулярное притяжение определяет возможность агрегации вещества, сопровождающейся выделением энергии. Оно играет важную роль в процессах адсорбции, катали- [c.133]


Смотреть страницы где упоминается термин Ван-дер Ваальса дисперсионные: [c.258]    [c.251]    [c.107]    [c.152]    [c.237]    [c.262]    [c.51]    [c.58]   
Учебник общей химии (1981) -- [ c.86 , c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Ваальса

Ван-дер-Ваальса дисперсионный эффект

Дисперсионные

Дисперсионные силы Ван-дер-Ваальса—Лондона

Силы Ван-дер-Ваальса (ориентационный, индукционный и дисперсионный эффекты)

Силы Ван-дер-Ваальса дисперсионные



© 2025 chem21.info Реклама на сайте