Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористая среда и ее свойства

    Коэффициент фильтрации используется обычно в гидротехнических расчетах, где приходится иметь дело с одной жидкостью - водой. При исследовании фильтрации нефти, газа и их смесей необходимо разделить влияние свойств пористой среды и жидкости. В этом случае формула Дарси (1.5) записывается обычно в несколько ином виде, а именно  [c.15]

    Рассмотрим основные характеристики пористой среды. Если не учитывать силовое взаимодействие между твердым скелетом породы и прилегающими к нему частицами флюида, то пористую среду можно рассматривать как границы области, в которой движется жидкость. Тогда свойства пористой среды можно описать некоторыми средними геометрическими характеристиками. [c.11]


    Влияние свойств пористого слоя на скорость фильтрования нередко выражают посредством параметров, определяющих его структуру, в частности эквивалентного размера пор, пористости слоя, удельной поверхности и щероховатости частиц. С этой целью принимают идеализированные модели пористого слоя, например модель цилиндрических капилляров. Однако в настоящее время принципы построения моделей пористых сред требуют уточнения [24]. Так, следует отметить, что способы определения параметров пористых сред адсорбцией, капиллярной конденсацией, ртутной поро метрией, электронной микроскопией нередко приводят к разным результатам, причем одни параметры модели и объекта могут совпадать, а другие различаться. Использование идеализированных моделей пористых сред не способствует лучшему пониманию процесса фильтрования, а все параметры, характеризующие пористую среду, в конечном счете приходится объединять в один, находимый экспериментально параметр, называемый коэффициентом проницаемости или удельным сопротивлением. К сказанному надлежит добавить, что отмечено шесть типов укладки моно-дисперсных шарообразных частиц в слое, причем форма пор, влияющая на гидродинамику слоя, различна для разных типов укладки [39]. [c.24]

    Задачи неустановившегося движения жидкости и газа в пласте решаются методами математической физики. Для этого составляются и затем интегрируются дифференциальные уравнения. Чтобы вывести дифференциальные уравнения фильтрации в пористой среде, заключающей в себе движущийся флюид (жидкость, газ), выделяется бесконечно малый элемент пласта и рассматриваются изменения массы, импульса и энергии, происходящие в этом элементе за бесконечно малый промежуток времени. При этом используются законы сохранения массы, импульса и энергии, а также результаты лабораторного или промыслового экспериментального изучения свойств и поведения флюидов и свойств пористой среды с изменением термобарических условий. [c.36]

    Дано аналитическое описание вязкого трехмерного и одномерного течения неньютоновской жидкости, свойства которой не зависят от времени, в анизотропной сжимаемой пористой среде [c.56]

    Во все другие формулы табл. 1.1 (графы 5-9) в качестве характерного размера входят величины, пропорциональные (где /с-коэффициент проницаемости породы), методы определения которых хорошо известны. Формулы этой группы не имеют принципиальных преимуществ и одинаково удобны для практического использования. Для этих формул характерно то, что все они приводят к очень широким диапазонам изменения Re,p для различных пористых сред. И это представляется вполне естественным ввиду разнообразия свойств испытанных пористых сред. Кроме того, это свидетельствует о том, что ни в одну из предложенных формул для определения Re не входит полный набор параметров, позволяющий характеризовать сложную структуру пористых сред, использования для этой цели коэффициентов пористости и проницаемости явно недостаточно. [c.21]


    Скелет твердой фазы осадка представляет собой пористую среду, свойства которой оказывают значительное влияние на результаты центробежного фильтрования и удаления жидкости из осадка (центробежного отжима осадка). [c.9]

    Для определения геометрической структуры пористой среды, существенно влияющей на фильтрационные параметры, кроме пористости и эффективного диаметра нужны дополнительные объективные характеристики. Определенную информацию о микроструктуре порового пространства дают кривые распределения размеров пор и зерен. Поэтому предпринимались многочисленные попытки определения геометрических и гидродинамических характеристик пористой среды на основе кривых распределения. Однако зависимости характеристик пористой среды от параметров кривых распределения не могут быть универсальными. Основные представления о свойствах пористой среды и насыщающих ее жидкостей рассматриваются подробно в курсе Физика нефтяного и газового пласта . [c.13]

    Нижняя граница определяется проявлением неньютоновских реологических свойств жидкости, ее взаимодействием с твердым скелетом пористой среды при достаточно малых скоростях фильтрации. [c.18]

    Наличие третьей строки табл. 1.1, в которой дано произведение Ке>., объясняется следующим. В области линейного закона фильтрации (Ке < Яе,р) справедливо равенство (1.13). Поэтому если произведение Ке>. зависит только от параметра Ва (см. графы 5-8 табл. 1.1), то оно имеет постоянное значение (не зависящее от свойств пористой среды) 20 [c.20]

    Среди перечисленных параметров только одна величина является вектором. Отсюда следует, что направления векторов скорости фильтрации и градиента давления должны совпадать. Если бы вектор скорости фильтрации составлял конечный угол с вектором градиента давления, то при повороте малого элемента пористой среды вокруг направления вектора градиента давления он тоже должен был бы повернуться вместе с элементом. Но поскольку при таком повороте свойства течения не должны меняться, так как среда изотропна, вектор скорости фильтрации должен остаться неизменным. Это может быть только, если вектор скорости направлен вдоль вектора градиента давления. Таким образом, получаем  [c.30]

    Для замыкания полученной системы уравнений необходимо задать связи параметров, характеризующих свойства фаз и пористой среды, с давлением. При изотермических условиях фильтрации средняя истинная плотность и коэффициент вязкости каждой из фаз определяются давлением в данной фазе  [c.256]

    В гл. 1 в связи с исследованием нияснец, границы применимости закона Дарси (при очень малых числах Рейнольдса) было рассмотрено аномальное (неньютоновское) поведение флюидов в пластовых условиях, не проявляющих этих свойств вне контакта, с пористой средой. Это объяснялось тем, что при очень малых, скоростях фильтрации наряду с силами вязкого сопротивление становятся существенными силы сопротивления, не зависящие от скорости фильтрации и связанные физико-химическим взаимодействием фильтрующихся жидкостей с материком пористой среды. Учет этих сил приводит к нелинейным законам фйльт-рации. [c.335]

    Матрицы пористых мембран представляют собой пористые среды, структурными свойствами которых обусловлен процесс разделения газовой смеси. При этом в газодиффузионных мембранах влияние матрицы ограничено в основном объемом пор и функцией распределения пор по размерам. В мембранах сорбционно-диффузионного типа, кроме того, существенно энергетическое взаимодействие компонентов газовой смеси и матрицы, количественно определяемое адсорбционным и капиллярным потенциалами. [c.38]

    Подытоживая сказанное о поверхностных явлениях в пористых средах, можно утверждать, что в результате равновесного взаимодействия матрицы пористой мембраны и газовой смеси компоненты последней могут находиться в трех различных состояниях объемной газовой фазы, свойства которой определяются ее составом и внешними параметрами (температура, давление и внешнее силовое поле) адсорбированной фазы, состав которой определяется уравнением изотермы адсорбции при известном составе объемной газовой фазы (адсорбированную пленку можно рассматривать как жидкость в силовом поле, характеризуемом адсорбционным потенциалом) конденсированной объемной фазы, находящейся под действием силового поля, определяемого капиллярным потенциалом. [c.53]

    АДХ процесса ингибирования можно регулировать технологическими приемами. Например, для увеличения скорости адсорбции перед задавкой раствора иногда проводят солянокислотную обработку (СКО) призабойной зоны пласта. Получаемый при этом эффект объясняется изменением поверхностных свойств пористой среды вследствие выщелачивания. Интенсификацию адсорбции объясняют увеличением площади коллектора, хотя СКО способствует увеличению не поверхности горной породы, а размеров фильтрационных каналов и трещин. [c.247]


    Осадок на фильтре с поршнем после очередного сжатия под действием нагрузки на поршень представляет собой жесткую пористую структуру с однородной пористостью по высоте. При этом процесс фильтрования при небольшой разности давлений аналогичен течению жидкости сквозь изотропную пористую среду с неизменными свойствами. [c.61]

    Затруднения, связанные с получением точных данных о свойствах твердых частиц и структуре фильтровального осадка, а также влияние физико-химических факторов уменьшаются по мере увеличения размера твердых частиц. Можно допустить, что при достаточно больших размерах частиц определение удельного сопротивления осадка окажется возможным свести к решению задачи о движении жидкости в пористой среде. [c.180]

    Явления, обусловливаемые молекулярным взаимодействием, играют большую роль в условиях нефтяного пласта, высокодисперсной пористой среды с развитой поверхностью, заполненной жидкостями, которые содержат поверхностно-активные вещества. Однако механизм этих явлений не познан настолько, чтобы при разработке нефтяных месторождений их можно было учитывать количественно. Использование изученных закономерностей в технологических процессах возможно лишь тогда, когда они описаны математически, с учетом основных факторов, определяющих эти закономерности. Решить такую задачу для нефтяного пласта трудно, так как геолого-физические и минералогические характеристики пласта и свойства жидкостей и газов, насыщающих его, не постоянны. Как результат молекулярно-поверхностных эффектов на границе раздела фаз в нефтяном пласте наибольшее значение имеет процесс адсорбции активных компонентов нефти на поверхности породообразующих минералов. С этим процессом прежде всего связана гидрофобизация поверхности, а следовательно, и уменьшение нефтеотдачи пласта. Образование адсорбционного слоя ведет к построению на его основе граничного слоя нефти, вязкость которого на порядок выше вязкости нефти в объеме, а толщина в ряде случаев соизмерима с радиусом поровых каналов. В связи с этим уменьшается проницаемость и увеличиваются мик-ро- и макронеоднородности коллектора. [c.37]

    Поверхностно-активные вещества (ПАВ) для повышения нефтеотдачи пластов применяют в виде добавок к нагнетаемой воде. Пластовая система нефть — вода — газ — горная порода имеет значительные поверхности раздела, например удельная площадь пор, каналов и трещин кернов, отобранных на Ромашкинском месторождении, составляет 70— 110 000 м /м . Поэтому характер фильтрации нефти в пласте и степень ее извлечения из пористой среды зависят не только от объемных физических и химических свойств породы и насыщающих флюидов, но и от свойств поверхности контактирования нефти, воды, газа и породы. Использование ПАВ направлено, главным образом, на регулирование этих свойств, которые принято называть молекулярно-поверхностными. [c.66]

    Отличительные особенности свойств полимерных растворов в пористой среде обусловлены адсорбцией и механическим улавливанием молекул полимера на поверхности пласта (керна). Это влияет на изменение реологических характеристик полимерных растворов, появление так называемого фактора сопротивления, который показывает, во сколько раз кажущаяся вязкость при фильтрации в пористой среде выще вязкости по вискозиметру. [c.117]

    В книге описаны физико-химические процессы, определяющие перемещение нефти в пласте при ее фильтрации, рассмотрен механизм адсорбции активных компонентов нефти па твердых поверхностях формирование на их базе граничных слоев нефтей, обладающих аномальными свойствами приведены исследования физических и реологических свойств граничных слоев. Рассмотрены природа поверхностно-активных компонентов нефти и их влияние на фильтрацию нефти и коэффициент вытеснения нефти из пористой среды. Дано описание аппаратуры и методик постановки и проведения опытов по вытеснению в условиях пластовых давлений и температур. [c.2]

    Толщина аномального слоя нефти на границе с твердой фазой была впервые определена в работе [117]. В этой работе по величине раскрытия щели до и после фильтрации нефти определяли толщину граничного слоя, образуемого на поверхностях, ограничивающих щель. В результате установлено, что толщина граничного слоя для исследованной нефти на данной поверхности (органическое стекло) составляет 1 мкм. Исследованиями [136, 120] было установлено, что в зависимости от природы твердой подложки и компонентного состава нефти толщина граничного слоя может достигать 2—5 мкм. Причем толщина аномального слоя зависит от градиента давления вытеснения и величины радиуса капилляров. Поэтому в пористой среде с размером пор, соизмеримым с толщиной граничного слоя, адсорбционно-сольватные слои, обладающие аномальными свойствами, должны оказывать значительное влияние на процесс фильтрации. [c.97]

    Наличие аномальных слоев нефти и воды на поверхности породы при двухфазной фильтрации этих жидкостей должно привести к чрезвычайно сложному комплексу явлений, определяющих во многом механизм жидкостей в пористой среде. От свойств граничных слоев нефти и воды зависит кинетика разрушения слоев, отрыв и прилипание капель нефти на поверхности породы, а также возможность продвижения жидкости, не связанной молекулярно-поверхностными силами в пористой среде. [c.97]

    В зависимости от перепадов давления, существующих в пористой среде, свойств жидкостей и характера поверхности пород та или иная часть жидкости (неподвижные пленки у поверхности породы, капиллярно удержанная жидкость и др.) не движется в гюрах. Динамическая полезная емкость коллектора характеризует относительный объем пор и пустот, через которые могут фильтроваться нефть и газ в условиях, суп ествующих в пласте. [c.13]

    При теоретическом исследовании устойчивости и циркуляции жидкости в пористой среде [20] принималась квазигомогенная модель горизонтального слоя, ограниченного плоскими изотермическими поверхностями и заполненного несжимаемой жидкостью, близкой по своим свойствам (прежде всего, по теплопроводности) к зернистому слою. Получено критичёское значение Rao = 4n 40, при котором нарущается устойчивость жидкости в слое. Это значение подтверждено в опытах. Как известно, для однофазной среды в горизонтальном слое аналогичная величина (ОгРг)о = 1700 [22, стр. 361]. Теоретически и экспериментально показана возможнос гь существования двухмерной конвекции, когда конвективные токи им ют вид чередующихся по направлению движения цилиндрических валиков. С увеличением критерия Ra устанавливается трехмерная конвекция, характеризующаяся образованием призматических щестиугольных ячеек с щириной примерно вдвое большей, чем высота. Внутри ячеек жидкость движется йверх, а на границах — вниз [19]. Подобная картина циркуляции в горизонтальных прослойках жидкости известна [12,21]. При Ra > 200—400 конвекция в пористой среде становится хаотической, нестационарной [19]. [c.109]

    Очень редко приводят значения важнейших термодинамических параметров (энтальпия и энтропия, теплоемкость, изобарно-изотермический потенциал и койстанты равновесия и др.) в условиях пористой среды пласта и в процессе фильтрации по нему нефтегазовых потоков (бинарных сдстем) при различных давлениях и температурах. Исключением являются работы (10, 29, 32, 47, 81), в которых рассмотрены некоторые термодинамические свойства различных углеводородных систем. [c.5]

    Все это дает возможность подробнее изучить термодинамические процессы, происходящие в пористой среде коллектора, когда по нему проходит флюид при различных соотношениях составляющих его углеводородов, и ставить вопросы об искусственном регулировании в широких диапазонах эффектов дросселирования жидкости и газа в пласте. Тогда будет можно, с одной стороны, в значительной степени улучшить фильтрационные свойства коллекторов и насыщающих их компонентов жидкости, а значит увеличить и нефтеотдачу пластов и, с другой стороны, благодаря нагреванию движущегося потока провести перенос точек петрации (затвердения) и отложения парафина из глубоких частей лифтовых труб колонны до системы наземных трубопроводов, предотвращая тем самым процесс отложения парафина внутри скважины. [c.11]

    Приведенные факты показывают, что многие жидкости (нефти, пластовая вода), не проявляющие аномальных свойств вне контакта с пористой средой, при малых скоростях фильтрации могут образовывать неньютоновские системы, взаимодействуя с пористой породой. Наличие начального градиента давления у, при достижении которого начинается фильтрация, было обнаружено и при движении флюидов в газоводонасыщенных пористых средах (А. X. Мирзаджанзаде и др.). При этом было установлено, что величина у изменяется в щироких пределах и в больщинстве случаев тем выще, чем больще глинистого материала содержится в пористой среде и чем выше остаточная водонасыщенность газоводяной зоны. [c.25]

    Закон Дарси справедлив для медленных фильтрационных движений, для которых силы инерции несущественны. Поэтому для таких движений несущественна плотность жидкости, определяющая свойство ее инерции. Таким образом, для медленных безьшерционных движений ньютоновской жидкости в изотропной пористой среде справедлив закон фильтрации (1.25), причем коэффициент пропорциональности С может зависеть только от определяющих параметров н , d,r, т. Размерности определяемого и определяющих параметров, как нетрудно определить, записываются в следующем виде  [c.31]

    Огромное многообразие пористых сред и пх геометрпческих свойств до сих пор, не позволяет выработать единую и общую классификацию пористых сред, если в качестве классиф1щирующего критерия используется какой-либо единый набор количественных характеристик. Тем не менее существует множество полуколи-чественных классификаций пористых сред и их различных структурных представителен [1]. Наиболее распространены классификации по виду дополняющих друг друга элементов твердой фазы и норового пространства. По замечанию Л. В. Радушкевича, пространство пор и пространство твердой фазы в пористом теле относятся друг к другу как негатив к позитиву, так что и любые соответствующие классификации дополняют друг друга (принцип дополнительности). Итак, по объекту описания все геометрические модели микроструктуры катализаторов можно разделить на два класса первые моделируют структуру скелета пористого тела, вторые — структуру порового пространства. [c.127]

    Модели псевдопористого пространства используются в основном в тех случаях, когда реальная пористая среда с взаимно распределенными фазами не может быть описана какой-либо простой моделью. Такие модели обычно накладываются на геометрическую модель структуры пористого пространства, с тем чтобы учесть какое-либо специфическое явление в нем, если упрощенная геометрическая модель не объясняет это явление. Естественно поэтому, что такая модель является грубым приближением, описывающим очень узкий круг свойств системы. [c.131]

    Данные о вытеснении нефти водными растворами других типов ПАВ из карбонатных и терригенных пористых сред приведены на рис. 35 и 36. Эти данные — результат многочисленных опытов на образцах с различной проницаемостью. Из рисунков видно, что применение анионного ПАВ сульфанал НП-36 в смеси с карбонатом натрия эффективно в карбонатных коллекторах любой проницаемости, но особенно при малой. Для вытеснения нефти из терригенных коллекторов смеси реагентов НП-3 и МазСОз, а также алкилсульфонат и неонол 2В1315-9 малоэффективны. Это связано с различием структуры порового пространства и молекулярно-поверхностных свойств (в частности, смачиваемости) терригенных и карбонатных пород. [c.82]

    При дилатантном течении свойства полимерных растворов таковы, что рост скорости сдвига приводит к ускорению процессов структуро-образеваиия и замедлению обратных процессов разрушения пространственных структур. В пористых средах причины дилатансйн могут быть иными. [c.111]

    Подвижность полимерных растворов в пористой среде. Этот иоказа-тель наиболее полно характеризует особенности течения полимерных растворов в пористой среде, так как обычная вязкостная характеристика не всегда отражает реальную картину. Например, более вязкие полимерные растворы при одинаковой концентрации не всегда имеют лучшие фильтрационные свойства. Это связано с тем, что различные полимеры обладают разной адсорбцией и способностью к механическому удерживанию, В работе [23] определены зависимости обратной относительной подвижности ( в х/цв, где А, йв — фазовые проницаемости для полимерного раствора и воды ц, нв—вязкости раствора и воды), полимерных растворов от скорости фильтрации, В частности, на основе изучения полученных [c.118]

    Испытания, проведенные институтом ТатНИПИнефть, показали, что растворы сульфата алюминия обладают хорошими нефтевытесвдющими свойствами в обводненных пластах. При взаимодействии сульфата алюминия с пластовой водой в пористой среде выпадают кристаллы гидрооксида алюминия А1(0Н)з, образуется вязкая масса, которая закупоривает промытые водой каналы, а непромытые нефтенасыщенные зоны подключаются к разработке. Интенсивность выпадения кристаллов гидрооксида алюминия и его вязкость зависят от концентрации сульфата алюминия в воде, от кислотности раствора, температуры времени старения раствора. Характеристика сернокислого алюминия ЛЬ (804)3 приведена ниже. [c.204]

    Как следует из материала рассмотренной главы, применение указанной методики позволило решить ряд важных практических задач в области расчета процессов, протекающих в химико-технологической аппаратуре. Так, развит прямой метод исследования гидродинамической структуры потоков в аппаратах на основе специфических свойств неустаповивпшхся течений жидкостей и газов в насадке и пористой среде установлен характерный для насадочных колонн гидродинамический эффект, проявляющийся в наличии экстремальной зависимости статической удерживающей способности от нагрузок по фазам на аппарат созданы методики и получены расчетные формулы для определения важнейпшх гидродинамических параметров структур потоков — коэффициентов продольного перемешивания, относительных объемов проточных и застойных зон, коэффициентов обмена между проточными и застойными зонами. Результаты исследования гидродинамической структуры потоков в насадке положены в основу анализа динамики процесса абсорбции в насадочных колоннах, оценки управляемости по каналам гидродинамики и массообмена и синтеза оптимального управления этими аппаратами. [c.433]

    Нефтяной коллектор представляет собой пористую среду, на-ыщенную жидкостью и газами. Поскольку часть поверхности оровых каналов нефтевмещающих пород гидрофильна, а другая асть гидрофобна, то смачиваются они нефтью по-разному. Рас- ределение гидрофильных и гидрофобных участков, их число и ередование зависят от природы породообразующих минералов, изико-химических свойств насыщающих пласт жидкостей и содержания в нем погребенной воды. Исследованиями, проведенными на большом числе месторождений нефти [209], выявлено ледующее распределение различных поверхностей в коллекто- X (%)  [c.3]

    Нефти различных месторождений и даже одного и того же месторождения по составу и физическим свойствам сильно различаются между собой (табл. 1), но всем нефтям в большей или меньшей степени присуща поверхностная активность. Еще в начале 40-х годов М. М. Кусаковым, П. А. Ребиндером, К. Е. Зинченко [88], а затем Ф. А. Требиным [178] было установлено, что фильтрация нефти в пористой среде сопровождается некоторым уменьшением расхода. Это явление указанные исследователи объясняли образованием на поверхности поровых каналов адсорбционных слоев полярных компонентов нефти, изменяющих молекулярную природу твердой поверхности и являющихся базой для формирования коллоидизированных граничных слоев нефти, отличающихся по реологическим свойствам от нефти, находящейся в свободном объеме. В результате этого явления уменьшается сечение фильтрационных каналов пористой среды и снижаются ее проницаемость и нефтеотдача. [c.5]

    Многие исследователи [8, 45, 46, 102, 111, 112, 124] указывали на аномальные свойства нефтей в пористой среде, которые проявляются тем больше, чем меньше скорость фильтрации нефти. Сравнение закономерностей фильтрации и вытеснения из пористой среды нефти и изовискозной ей неполярной жидкости показывает, что явления, осложняющие указанные процессы, тесно связаны с содержанием в нефти поверхностно-активных компонентов [9, 45, 157, 184]. Затухание фильтрации тем больше и соответственно коэффициенты вытеснения тем меньше, чем больше в нефти поверхностно-активных веществ. [c.5]

    Исследования В. В. Девликамова с сотрудниками [46—48, 163] показали, что в пластовых условиях нефти обладают структурномеханическими свойствами. Поверхностно-активные компоненты нефти образуют пространственную структуру. Она препятствует движению нефти в пористой среде и, следовательно, ее вытеснению. На контакте нефть — породообразующие минералы формируются слои нефти, обладающие аномальными свойствами, толщина которых соизмерима с радиусом поровых каналов нефтяных коллекторов [30, 105, 108, ИЗ, 118, 119, 120, 122, 136]. [c.5]

    Итак, в условиях трехфазной границы раздела возможности существования или разрыва граничного слоя, прилипания или отрыва капель нефти или воды на поверхности, а следовательно, кинетика процесса вытеснения этих жидкостей в пористой среде определяется молекулярной природой поверхности породы, слагающей продуктивные пласты, а также молекулярно-поверхностными и физико-химическими свойствами нефти и воды. В зависимости от свойств этих жидкостей и их состояния в пористой среде возникающие при совместном движении нефти и воды молекулярно-поверхностные явления, обусловленные влиянием граничных слоев, могут являться одной из серьезных причин, приводящих к значительному снижению коэффициента нефтеотдачи. [c.97]


Смотреть страницы где упоминается термин Пористая среда и ее свойства: [c.144]    [c.15]    [c.16]    [c.21]    [c.26]    [c.132]    [c.205]    [c.110]    [c.215]   
Смотреть главы в:

Теория нестационарной фильтрации жидкости и газа -> Пористая среда и ее свойства




ПОИСК





Смотрите так же термины и статьи:

Влияние физико-химических свойств жидкости на структуру порового пространства системы пористая среда—насыщающая жидкость



© 2024 chem21.info Реклама на сайте