Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неорганические соединения азота с водородом

    Физико-химические свойства некоторых неорганических соединений азота с водородом приведены в табл. 4. [c.17]

    НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ АЗОТА С ВОДОРОДОМ [c.46]

    В состав многих органических соединений входит азот. Большая часть азотсодержащих органических соединений — это производные простых неорганических соединений азота азотной кислоты НО—NOj, азотистой кислоты НО—N0, аммиака NH3, у которых гидроксильная группа — ОН или водород, связанные с азотом, замещены различными радикалами. [c.136]


    Процесс гидрокрекинга получил в настоящее время широкое распространение как метод превращения тяжелых дистиллятов сырой нефти в более легкие фракции, которые являются важным сырьем для получения алкенов и аренов. Гидрокрекинг ведут как правило на бифункциональных катализаторах в избытке водорода при температурах до 450 °С и давлениях 15—20 МПа. В этом процессе превращения происходят в два этапа а) разрушение органических соединений серы и азота (это необходимо, так как первые ингибируют гидрирующий компонент, вторые отравляют кислотные центры, ответственные за крекинг) с удалением 5 и N в виде их неорганических соединений б) крекинг углеводородов на поверхности кислотного компонента катализатора с одновременным гидрированием на металлических центрах. [c.89]

    Качественный анализ позволяет установить, какие элементы входят в состав исследуемого вещества (кроме углерода и водорода в органических соединениях могут содержаться кислород, азот, сера, галогены, фосфор и другие элементы). Принцип качественного анализа заключается в переводе химических элементов в неорганические соединения, которые затем легко определяются общими аналитическими методами. Например, при обнаружении углерода и водорода органическое соединение сжигают, а образовавшиеся окислы углерода (СО2) и водорода (Н2О) определяют по помутнению раствора Са(ОН)д и наличию капель воды на стенках пробирки, в которой проводилось сожжение. Галоген в органическом веществе определяют по методу Бейльштейна. Этот метод заключается в том, что на предварительно прокаленную в пламени горелки медную проволочку наносят каплю определяемого раствора и за- [c.31]

    Важнейшими неорганическими соединениями являются соединения элементов с кислородом, водородом, галогенами, серой, азотом, фосфором, углеродом, а также кислоты, основания и соли. [c.83]

    Для углерода характерны прочные ковалентные связи между собственными атомами (С—С) и с атомом водорода (С—Н) (см. табл. 17.23), что нашло отражение в обилии органических соединений (несколько сот миллионов). Кроме прочных связей С—Н, С—С в различных классах органических и неорганических соединений, широко представлены связи углерода с азотом, серой, кислородом, галогенами, металлами (см. табл. 17.23). Столь высокие возможности образования связей обусловлены малыми размерами атома углерода, позволяющими его валентным орбиталям 25 2р максимально перекрываться. Важнейшие неорганические соединения углерода приведены ниже. [c.459]


    Углерод способен в соединении с водородом, кислородом и азотом образовывать очень большое число веществ. Для соединений углерода характерно явление изомерии, что очень редко встречается среди неорганических соединений" [c.17]

    При использовании пламенно-ионизационного детектора в газовый поток, выходящий из колонки, добавляют водород в качестве газа-носителя при этом используют азот или гелий, причем водород и газ-носитель смешивают в отношении 1 1. Полученную смесь направляют в горелку и сжигают в воздухе или кислороде. Ионы, образующиеся при сгорании органических веществ, уменьшают электрическое сопротивление пламени пропорционально количеству сгоревшего вещества. К горелке и электроду, который расположен над пламенем или сбоку от него, прикладывают разность потенциалов (100—300 В). Величина возникающего при этом тока зависит от сопротивления пламени, и она после усиления непрерывно регистрируется самописцем. Этот детектор имеет прекрасную чувствительность, его характеристика линейна в широком диапазоне концентраций (10 ), он обладает малой инерционностью, замечательно стабилен, чувствителен ко всем органическим соединениям, нечувствителен к неорганическим соединениям, на его работу не влияют небольшие изменения температуры и скорости газового потока. Наряду со всеми этими качествами он прост в обращении и благодаря этому стал одним из наиболее популярных, если не самым популярным, из ГХ-детекторов. Для точного количественного анализа с применением этого детектора для каждого соединения необходимо определить соответствующие коэффициенты отклика. [c.430]

    Прн получении под вакуумом в чистом внде можно также запаивать эти вещества в ампулы. Последние вносят затем в реакционный сосуд и разбивают магнитным бойком (см. выше). Гигроскопичные жидкости и растворы можно, кроме того, вслед за операциями нх очистки перенести в реакционный сосуд при помощи инъекционного шприца нли с использованием специальной техники работы, описанной выше (ч. I, разд. 13). Гигроскопичные твердые вещества в ряде случаев целесообразно вносить в тонкостенных разбиваемых ампулах. Отдельные части установки следует по возможности спаивать друг с другом, а число кранов в ней должно быть небольшим. Если это окажется невыполнимым, то уплотнение мест соединения должно выполняться с особой тщательностью. В местах соединения аппаратуры с вакуумной системой или с атмосферой помещают трубки с осушающими веществами нли, еще лучше, вымораживающие ловушки, охлаждаемые жидким азотом, ч-го предотвращает попадание в аппаратуру влаги из воздуха. Поскольку большинство неорганических соединений дейтерия способно так же, как и тяжелая вода, обменивать в присутствии обычной воды часть дейтерия на водород, указанные выше меры предосторожности необходимо учитывать при проведении всех описываемых ниже реакций. [c.158]

    К органическим относятся вещества, в состав которых входит углерод. Исключение составляют его простейшие соединения, например оксиды углерода, угольная кислота, ее соли, которые по свойствам близки к неорганическим веществам. Наряду с углеродом в состав органических соединений входят водород, кислород и азот, реже — сера и фосфор, галогены и некоторые металлы (порознь или в различных комбинациях). [c.238]

    Соединения включения широко известны и в неорганической химии Это кластеры, соединения внедрения водорода (Рс1), кислорода (Тх, ЫЬ), азота (сталь), углерода (сталь), соединения включения стали, графита, алюмосиликатов (цеолиты) и др [c.61]

    Пламенно-фотометрический детектор (рис. 146) применяют для определения малых содержаний серы и фосфора в неорганических соединениях. Газом-носителем служит азот сжигают водород в [c.198]

    В обзорной отечественной литературе неорганическим соединениям бора с водородом и азотом и некоторым их неорганическим производным уделялось мало внимания, хотя этого вопроса кратко касается в своей книге Б. В. Некрасов [4], который является автором многих интересных работ по теории строения бороводородов. [c.85]

    Главные компоненты органических соединений — углерод, водород и кислород второстепенные элементы — азот, фосфор, сера и некоторые металлы. Каж дый атом углерода имеет четыре ковалентные связи. Некоторые органические вещества — природного происхождения, например волокна растений и ткани животных другие могут быть получены в результате реакций синтеза (резина, пластмассы и т, д.) или процессов ферментации (спирты, кислоты, антибиотики и др.). В отличие от неорганических соединений органические веп ества обычно горят, имеют высокую молекулярную массу, в очень небольшой степени растворимы в воде, в реакции вступают чаще в молекулярной форме, чем в ионной, являются источником пищи животных и подвержены распаду под воздействием микроорганизмов. [c.20]

    Органические соединения, кроме углерода С, содержат главным образом водород Н, кислород О и азот К нередко в их состав входят галоиды С1, Вг, Л, сера 8, фосфор Р. Эти элементы называются органогенами. Чтобы определить, какие органогены (за исключением кислорода) входят в состав органического соединения, т. е. провести их качественное определение, используют ряд способов. Все они основаны на превращении сложных органических веществ в простые неорганические соединения тех элементов, которые входили в состав исследуемых веществ. Эти [c.6]


    Достоинством катарометра является его универсальность. Катарометр может быть использован для детектирования постоянных газов, различных неорганических соединений (в том числе и таких агрессивных, как двуокись азота, хлористый водород, фтористые газы и т. п., если применяется катарометр специальной конструкции) и паров органических соединений. При количественных расчетах необходимо учитывать, что сигнал детектора зависит от вида анализируемых соединений [21—26]. [c.23]

    Водород под давлением 10—20 МПа и при нагревании до 200 °С и выше, а также в присутствии активирующих веществ может выделять металлы из растворов их солей. При высокой температуре водород восстанавливает многие неорганические соединения, оксиды, сернистые соединения. В присутствии катализаторов водород гидрирует непредельные и ароматические углеводородные соединения. Гидрирование является процессом присоединения каким-либо веществом водорода чаще всего это происходит в присутствии катализатора, при повышенной температуре, под давлением (гидрирование азота до аммиака, гидрирование оксида углерода до метана, до метанола и высших спиртов, угля до жидких углеводородов, гидрирование непредельных и ароматических соединений). В присутствии коллоидной платины или палладия ряд процессов гидрирования протекает на холоду. [c.53]

    В состав всех клеток и тканей организма входят углерод, кислород, водород и азот. Они составляют основную массу органического вещества. В организме обнаружены также сера, хлор, фосфор, натрий, калий, магний, железо и другие элементы, входящие в состав органических и неорганических соединений. Для их обнаружения исследуемую ткань подвергают минерализации сухим путем, вначале до образования углистого остатка, а затем до полного озоления. [c.9]

    В том случае, если есть уверенность в чистоте органического вещества, проводят его качественный анализ, т. е. исследуют, какие элементы входят в его состав. В органических веществах помимо постоянной составной части — углерода наиболее часто содержатся водород, кислород, азот, сера, фосфор и галогены (С1, Вг, 1). Общий принцип открытия этих элементов в органических соединениях заключается, в том, что элементы переводят в неорганические соединения и затем открывают их методами неорганической и аналитической химии. [c.16]

    В состав органической части пефти входят также сера (до 3%), азот (до 0,3%) и кислородХдо 1%) [2, с. 21]. В процессе переработки нефти стремятся получить продукты, не содержащие этих элементов, поэтому их переводят в неорганические соединения с водородом (НзЗ, ]ЧНз, НзО). Стехиометрический расход Нг на очистку от серы, азота и кислорода невелик, практически же процессы очистки требуют значительного расхода водорода. [c.11]

    Группа 20. Аэробные хемолитотрофные бактерии и близкие к ним организмы. К этой группе относятся прокариоты, получающие энергию за счет окисления восстановленных неорганических соединений азота, серы, железа, а также молекулярного водорода. Группа разделена на 4 подфуппы в зависимости от химической природы окисляемых неорганических соединений. [c.175]

    Пользуясь изящными методическими приемами, в основу которых был положен микроэкологический принцип, С. Н. Виноградский вьщелил из почвы микроорганизмы, представляющие собой соверщенно новый тип жизни и получивщие название хе-молитоавтотрофных. В качестве единственного источника углерода для построения всех веществ клетки хемолитоавтотрофы используют углекислоту, а энергию получают в результате окисления неорганических соединений серы, азота, железа, сурьмы или молекулярного водорода. [c.14]

    Органические соединения, образую1Цие живую материю, состоят из общих для всех органических соединений углерода и водорода, в большом числе случаев в них входят таюке кислород, азот, ряд важных соединений содержат серу и фосфор. Эти же элементы представлены в живой природе и в виде целого ряда неорганических соединений, прежде всего воды, солей аммония, карбОЕгатов, сульфатов, орто-и пирофосфатов, и являются главными биогенными элементами. Вместе с тем функционирование живой материи требует участия целого ряда других элементов, как металлов, так и неметаллов. [c.64]

    Изоцианаты способны взаимодействовать со многими органическимн и неорганическими соединениями, содержащими активные атомы водорода. В большинстве случаев происходит простое присоединение, включающее миграцию активного атома водорода к атому азота изоцианатной группы. При взаимодействии спиртов с изоцианатами влияние пространственных факторов становится особенно заметным [c.354]

    Основные научные работы по-свяшены неорганической и аналитической химии. Исследовал (1900—1909) различные кристаллические модификации фосфора, мышьяка, сурьмы и их соединения с водородом, серой и азотом. Усовершенствовал ряд лабораторных приборов. Положил начало (1912] изучению бороводородов. Открыл [c.583]

    Разделение и анализ неорганических соединений методом газовой хроматографии получили значительно меньшее развитие, чем органических, вследствие малой летучести многих неорганических соединений и трудности выбора соответствующих насадочных материалов для колонки. Кауфман и другие [93 ] разделили некоторые гидриды бора на колонке с парафиновым маслом, нанесенным на целит, при комнатной температуре. Перманентные неорганические газы лучше всего разделяются методом газо-адсорбционной хроматографии. Кириакос и Бурд [107] полностью разделили смесь, состоящую из водорода, кислорода, азота, метана и окиси углерода, на колонке длиной 4,9 м, содержащей молекулярные сита Линде 5А с крупностью зерен 30—60 меш, которые перед применением активировалось при 350° С в вакууме. На рис. ХУП1-3 показано превосходное разделение, полученное для указанной смеси газов. Шульчевский и Хигучи [165 ] показали, что силикагель при температурах смеси сухого льда и ацетона также может применяться для разделения кислорода и азота. Грин и другие [64] полностью разделили водород, окись и дву- [c.402]

    Фторсодержащие органические соединения получаются действием неорганических соединений фтора (СоРз, МпРз) или фтора, разбавленного азотом на углеводороды в присутствии катализаторов. В этих условиях все атомы водорода в углеводородах могут быть замещены на фтор, такие соединения называются фторуглеродамп. Фторированием различных нефтяных фракций получаются фторсодержащие жидкости, применяемые в качестве специальных масел. Полимеризацией фторолефинов, например перфтор- [c.369]

    Многие группы почвенных и водных бактерий могут использовать в качестве доноров водорода или электронов неорганические соединения или ионы (ионы аммония, нитрита, сульфида, тиосульфата, сульфита и двухвалентного железа), а также элементарную серу, молекулярный водород и СО, т.е. способны получать в результате их окисления восстановительные эквиваленты и энергию для синтетических процессов. Получение энергии происходит, как правило, в результате дыхания с О2 как конечным акцептором водорода. Лишь немногие из относящихся к этой группе бактерий способны расти за счет анаэробного дыхания , используя в качестве акцепторов водорода нитрат, нитрит, закись азота и т.п. Такой образ жизни с использованием неорганического донора водорода называют хемолитотрофным. [c.348]

    Ароматические фторпроизводные получают главным образом нуклеофильным замещением атомов хлора или диазониевой группы (реакция Шимана) (см. разд. 11.3). Однако известен ряд способов электрофильного фторирования аренов фтором, а также его органическими или неорганическими соединени 1ми. Прямое фторирование молекулярным фтором в обычных условиях невозможно из-за его высокой реакционной способности. Энергия диссоциации молекулы Рг на атомы составляет 150,6 кДж/моль, тогда как энергии образования связей С—Р и И—р. равны 485,3 и 418,4 кДж/моль соответственно [595]. Вследствие этого фторирование молекулярным фтором чрезвычайно экзотермично. Замещение атомов вОдорода на фтор в аренах удается провести при сильном разбавлении фтора азотом или аргоном, низких температурах и очень малой конверсии. Практического значения фторирование молекулярным фтором пока не имеет. Для изучения ориентации и субстратной селективности реакции пропускали смесь фтора с азотом (<1% Рг) в раствор арена РЬХ (X—И, Ме, ОМе, С1, Вг, Р, N02, СК) в СС1зР при —78°С [596]. Факторы парциальных скоростей при конверсии порядка 0 01% отлично коррелируют с о+-константами заместителей (коэффициент корреляции [c.233]


Смотреть страницы где упоминается термин Неорганические соединения азота с водородом: [c.6]    [c.309]    [c.105]    [c.248]    [c.376]    [c.47]    [c.314]    [c.485]    [c.40]    [c.327]    [c.713]    [c.402]    [c.663]    [c.144]    [c.229]    [c.22]   
Смотреть главы в:

Аналитическая химия азота _1977 -> Неорганические соединения азота с водородом

Аналитическая химия азота _1977 -> Неорганические соединения азота с водородом




ПОИСК





Смотрите так же термины и статьи:

Азот водород

Водород соединения

Соединения азота и азота



© 2025 chem21.info Реклама на сайте