Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разложение перекиси водорода в присутствии катализатор

    Разложение перекисных соединений происходит в присутствии некоторых металлов (железа, меди, марганца, кобальта, хрома) и их солей, являющихся катализаторами. Поэтому концентрированная перекись водорода, надуксусная кислота, а также ряд других перекисей способны взрываться в отсутствие органических веществ. [c.107]

    Перекись водорода легко разлагается при нагревании или в присутствии катализаторов. Разложение перекиси водорода протекает по реакции [c.407]


    Свинец—один из наиболее активных гетерогенных катализаторов. Опубликованы разные качественные характеристики этого каталитического процесса [134, 145, 146], а именно двухвалентный свинец в кислом растворе не оказывает никакого действия на перекись водорода для разложения ее требуется ш,елочная среда, в которой образуется двуокись свинца. В результате изучения [147] механизма этого катализа сделан вывод, что его можно описать как окислительно-восстановительный цикл между двухвалентным свинцом РЬ(ОН). и свинцовым суриком РЬзО . Условия высокой каталитической активности возникают тогда, когда оба эти веш,ества присутствуют как твердые фазы в сильнощелочном растворе образуются высшие окислы. Влияние различных интервалов pH можно охарактеризовать следующим образом. Азотнокислый свинец растворяется в перекиси водорода с образованием прозрачных устойчивых растворов. При добавке щелочи выпадает беловато-желтый осадок и возникает небольшая активность. При дальнейшей добавке щелочи осадок переходит в оранжево-красный и начинается бурное разложение перекиси. Как оказалось, количество щелочи, требующееся для достижения этой точки, обратно пропорционально количеству растворенного свинца на это явление накладывается еще четко не установленное влияние старения. Количество пирофосфата, требующееся для прекращения катализа, примерно эквивалентно количеству, необходимому для образования пирофосфорнокислого свинца РЬ Р О.. Каталитическая активность проходит через максимум приблизительно при 0,2 н. концентрации щелочи при более высокой концентрации возрастает растворимость свинца в виде плюмбита и плюмбата и каталитическая активность снижается. Сделана попытка [147] доказать наличие циклического процесса окисления— восстановления при помощи радиоактивных индикаторов, однако она закончилась неудачей в связи с тем, что даже в отсутствие нерекиси водорода происходит обмен между ионом двухвалентного свинца и двуокисью свинца в азотной кислоте (что соответствует литературным данны.м [148, 149]) и между плю.мби-том и плюмбатом в основном растворе (что противоречит опубликованным данным [149[). [c.401]

    Свинцовые соединения являются активными катализаторами разложения. Свинцовое оборудование можно успешно применять лишь в условиях, когда присутствуют сульфаты, вызывающие образование покрытия из инертного сульфата свинца. Свинец применяется в некоторых случаях на заводах, вырабатывающих перекись водорода по электролитическому пероксодисульфат-ному процессу, и при отбелке сырой шерсти в присутствии сульфатов. Однако применение свинца в контакте с любыми растворами перекиси, за исключением весьма разбавленных, может быть опасным, и поэтому его следует избегать. [c.147]


    Реакции разложения характерны для компонентов ракетных топлив, представляющих собою эндотермические вещества. Как правило, они могут длительное время храниться без разложения при нормаль- ных температурах, но нри повышении температуры или при воздействии катализатора начинается разложение, самоускоряющееся под воздействием выделяющегося нри этом тепла. Так, гидразин, нагретый до 350° С, полностью разлагается на азот и аммиак, причем гораздо интенсивнее в присутствии окислов железа, хрома, меди и других катализаторов. Характерным веществом, способным к разложению с выделением тепла, является перекись водорода. Б чистом виде она довольно устойчива и только при нагревании свыше 140° С начинает разлагаться на воду и кислород с выделением тепла. Абсолютно чистая Н2О2 может быть нагрета до кипения (151,4° С) и перегоняться без разложения, однако даже малейшие царапины на стенках сосуда, в котором нагревается перекись водорода, могут явиться причиной ее разложения. Скорость разложения перекиси зависит от ее концентрации, величины pH, температуры, природы и количества катализирующих разложение примесей или стабилизаторов, физической и химической природы поверхности сосудов, в которых находится Н2О2. [c.205]

    ДО трехвалентного состояния и осаждение гидрата окиси кобальта до достижения условий, в которых наблюдается осаждение гидрата закиси кобальта. Другие опыты [218] показывают, что концентрация кобальта, требующаяся для инициирования катализа, обратно пропорциональна концентрации щелочи, причем критерием катализа является достижение произведения растворимости. При концентрациях щелочи ниже примерно 6 н. весь осажденный кобальт находится в трехвалентном состоянии, весь же кобальт в растворе—в двухвалентном. В более щелочной среде происходит некоторое растворение трехвалентного кобальта. Пирофосфат, карбонат, сульфид и арсенат в качестве ингибиторов этого катализа неэффективны, и ультрафиолетовый сиектр поглощения щелочных растворов, содержащих ион двухвалентного кобальта и гидрат окиси кобальта, не изменяется при добавке перекиси водорода. Исследования при помощи радиоактивных индикаторов [221] показали отсутствие обмена между иоиом закисного кобальта и гидратом окиси кобальта, безразлично в присутствии или в отсутствие перекиси водорода. Эти факты, очевидно, исключают возможность катализа по механизму окислительно-восстановитель-ного цикла. Однако, возможно, что катализ происходит по свободнорадикальному механизму. Этот механизм предложен, между прочим, для объяснения каталитического разложения озона [222] и гидроперекиси кумола [223] кобальтом. Далее, исследование [224] окисления воды до кислорода ионом окисного кобальта показало, что эта реакция в состоянии вызвать полимеризацию виниловых соединений постулировано, что при этом образуются гидроксильные радикалы путем переноса электрона от гидроксильного иона к окисному иону кобальта, причем последний, возможтю, находится в растворе в виде димерного комплекса с водой. Оказывают каталитическое действие на перекись водорода [225] и другие комплексы кобальта, например с аммиаком и цитратом. Кобальт на носителе [184, 226] также обладает каталитическими свойствами. Сообщается и о промотировании катализаторов разложения перекиси водорода кобальтом [168, 227]. г-  [c.409]

    Элементарный углерод не вступает в стехиометрическую реакцию с перекисью водорода, хотя протекающее при этом разложение вызывает в известной степени изменение поверхности углерода. Руп и Шлее [218] сообщили, что перекись водорода окисляет карбонат до муравьиной кислоты и формальдегида, попозже [219 они выяснили, что это действие обусловлено присутствием примесей. Нет никаких сообщений о реакции перекиси водорода с производными кремния, если не считать данных об абсорбции [220] и образовании перекисей [221]. Металлический германий протравливается перекисью водорода [222]. Вопрос об инертности металлического олова уже обсуждался при рассмотрении техники обращения с перекисью водорода (стр. 146). В растворе двухвалентное олово превращается перекисью водорода в четырехвалентное [223], причем водная двуокись олова совершенно инертна, а поэтому применяется даже в качестве стабилизатора. Сравнительная инертность, наблюдающаяся у этих элементов, отсутствует у последнего члена группы, свинца, который является весьма активным катализатором разложения. Металлический свинец растворяется в подкисленной перекиси водорода при повышении pH образуются окислы, причем в щелочных растворах продуктом реакции, безусловно, является двуокись свинца [224]. [c.337]

    В присутствии катализаторов, вызывающих разложение перекиси водорода, перекись водорода (или радикалы гидроксила) реагируют не в направлении образования иона тетратионата, а разлагаются с выделением молекулярного кислорода. Выход тетратионата по току в таком случае должен снизиться. Некоторые исследователи предполагали, что, возможно, ионы S20 разряжаются непосредственно на аноде, образуя 8аО , а уж последние затем соединяются попарно. Этот взгляд, однако, не [c.683]


    В неводных растворах электросинтез Кольбе идет с высокими выходами по току как на анодах из платинированной платины и золота, так и на аноде из гладкой платины. Повышение температуры и присутствие катализаторов для разложения перекиси водорода — два фактора, которые в водных растворах оба оказывают отрицательное действие, а в неводных — сравнительно небольшое влияние. Механизм реакции в растворах, неводных и водных, очевидно, совершенно различен. В первых нет ионов гидроксила и, следовательно, не могут образовываться ни радикалы гидроксила, ни перекись водорода. Поэтому, вероятно, прямой разряд ионов ацетата протекает при таком потенциале, который в данном растворителе почти не зависит от вещества электрода. Образующиеся радикалы, вероятно, соединяются попарно, как в водных растворах, образуя перекись ацетила, которая затем разлагается, как уже было описано выше [13]. [c.689]

    Способность перекиси водорода разлагаться в присутствии кaтaлизaтqpoв позволяет в двигателях, работающих на этом окислителе, не иметь специального зажигательного устройства для запуска. На перекиси водорода возможен так называемый термический запуск двигателя. Перекись водорода подается в предкамеру (небольшой объем, сообщающийся с основной камерой сгорания), где под воздействием находящегося здесь катализатора она разлагается. Горячие газообразные продукты разложения перекиси водорода поступают в основную камеру сгорания двигателя. После того как в камере сгорания создается необходимое давление для нор мального сгорания топлива, в нее подают горючий компонент. [c.56]

    Работами различных исследователей с очевидностью установлено, что чистая перекись водорода любой концентрации, свободная от загрязняющих катализаторов, в совершенно чистом сосуде из некаталитического материала представляет собой весьма устойчивое соединение. Так, типовые данные, полученные для высококачественной нестабилизированной перекиси водорода, находившейся в сосуде с отношением поверхности к объему 0,7 смг -, показывают, что скорость разложения 90%-ной перекиси водорода при 50° не превышает 0,0010% в час, а возможно даже значительно меньшего процента. В присутствии небольшого количества стабилизатора, например станната натрия или 8-оксихинолинпирофосфата, эту величину можно уменьшить примерно до 0,0003% в час при 50°. Если принимать особенно тщательные меры [1] по очистке и концентрированию перекиси водорода, можно снизить и скорость разложения нестабилизированной перекиси водорода до этого же уровня. Соответствующее значение при 30° равно примерно 0,00006% в час, или около 0,5% в год. Тщательные измерения, проведенные с применением нестабилизированной, менее концентрированной перекиси водорода, полученной путем разбавления возможно более чистых концентрированных растворов очень чистой водой, показали, что скорость разложения (в процентах) возрастает лишь слабо в интервале концентраций от 95 до 40% перекиси водорода. Однако если вода, использованная для разбавления, не подвергнута особо тщательной очистке или разбавление не проведено с достаточной тщательностью, чтобы устранить возможность заметного загрязнения, то скорость разложения разбавленной перекиси может оказаться значительно больше скорости разложения начального концентрированного раствора. Так, Жигер и Жоффрион [2] наблюдали, что при разбавлении нестабилизированной перекиси водорода дважды дистиллированной водой получаются растворы, которые неизменно обладают заметно повышенной способностью к разложению, а поэтому для обеспечения стабильности, требующейся при измерении показателя преломления растворов, необходимо добавлять к ним небольшое количество станната натрия. [c.429]

    Часто трудно определить, представляют ли собой перекиси, выделенные из реакционной смеси, перекись водорода или же они являются органическими перекисями до самого последнего времени было предпринято лишь немного попыток определить строение этих перекисей. Выводы относительно характера перекисей могут быть сделаны на основании следующих доказательств 1) состава газа и жидкости, образующихся при разложении перекиси (например, перекись водорода дает при этом кислород и воду гидроперекись оксиалкила при щелочном разложении дает водород и кислоту гидроперекись метила при разложении па платиновой черни [145] дает двуокись углерода) 2) разных цветных реакций, например реакции с применением титановой соли, которую считают весьма специфичной для перекиси водорода (см. гл. 10) 3) характеристики реакции с кислым раствором йодистого калия (гидроперекись метила, например, реагирует лишь в присутствии сернокислого закисного железа как катализатора, но не реагирует в присутствии молибдата аммония [146] кроме того, скорость окисления йодида до йода заметно зависит от характера перекиси [147, 148]) 4) образования нерастворимых неорганических перекисей, например перекиси кальция или пероксобората натрия, при введении соответствующих добавок к продукту, что доказывает наличие перекиси водорода или гидроперекисей оксиалкилов 5) сравнения спектров поглощения с этими спектрами для известных перекисей [149, 150] 6) определения коэффициентов распределения с эфиром [151] 7) методов хроматографического разделения [146, 152] 8) определения скорости термического разложения различных перекисей при температуре реакционной зоны и 9) методов полярографии [152—1541 (см. гл. 10). [c.76]

    В одном частном случае, когда присутствие нитрата в 30%-ном (по весу) растворе перекиси водорода оказалось вредным, он был удалей из нее в основном путем адсорбции на активированном угле со сравнительно незначительным разложением перекиси [24]. В качестве лабораторного метода предложено также [25] очищать перекись водорода путем быстрого добавления при перемешивании сначала раствора хлорного железа, а затем углекислого кальция и быстрого фильтрования смеси через тигель Гуча. Последующим приливанием концентрнроваЕиюй серной кислоты удаляют остаточную желтую окраску и осаждают кальций. Первые два добавляемых вещества, вероятно, образуют осадок водной гидроокиси железа (П1), которая, обладая высокой адсорбционной способностью, может захватить небольшие количества примесей. Однако соединения железа являются мощными катализаторами разложения, и даже небольнше количества, остающиеся после указанной обработки, могут быть причиной значительного разложения. Трудно себе представить, чтобы такого рода методика, сопряженная с введением недопустимого загрязнения, обладала какими-либо преимуществами перед способом осаждения гидратом окиси олова. В лучшем случае может произойти заметное разложение перекиси в худшем случае этот процесс сопряжен с опасностью, связанной с добавкой к перекиси каталитически действующих веществ, особенно если они введены в заметной концентрации. Поэтому описанный способ ни в коем случае не может быть рекомендован. [c.140]

    Степень фотохимической деструкции, однако, подчиняется более сложным зависимостям. Так, введение меди в волокно снижает степень фотохи-л 1ческой деструкции для хлопка, окрашенного наиболее чувствительными красителями, но увеличивает деструкцию неокрашенного хлопка или хлопка, обработанного кубовыми красителями темного цвета таким образом, степень деструкции фактически оказывается независящей от природы взятого красителя. Железо и другие металлы также влияют на фотохимическую деструкцию. Возможное объяснение заключается в том, что различные тяжелые металлы способствуют пе только разложению перекиси водорода, но и образованию ее в результате самоокисления в атмосфере (см. стр. 68), а поэтому в некоторых случаях размер деструкции значительно больше зависит от природы и количества присутствующих тяжелых металлов, чем от природы красителя. В этом отношении интересно было бы изучить влияние металлов, обладающих сравнительно ничтожными каталитическими свойствами, а также неметаллических катализаторов на фотохимическую деструкцию хлопка. Шеффер [45] обнаружил перекись водорода также при щелочной обработке одной целлюлозы и привел доказательства, подтверждающие, что щелочная деструкция целлюлозы происходит в результате гидролиза глюко-пирлР1озных колец целлюлозы с последующим окислением перекисью. [c.490]

    Опытным путем можно установить, что катализаторы ужньшают энергию активации процесса и тем самым ускоряют его (см. рис. 5). Например, энергия активации разложения перекиси водорода (2Н202->2Нг0 + Ог) в чистом водном растворе составляет 18 ккал/моль, в присутствии коллоидной платины — 11,7 ккал/моль, а в присутствии фермента каталазы — всего только 5,5 ккал/моль. Вследствие этого перекись водорода, плохо поддающаяся разложению в чистом водном растворе, при соприкосновении с такими тканями живых организмов, которые вырабатывают каталазу, быстро разлагается и производит сильное окислительное (а также разрушающее) действие. [c.71]

    В связи с этим представляет интерес метод экспресс-определений галогенов по Шёнигеру [5], который заключается в сожжении навески органического вещества, содержащего галогены, в атмосфере кислорода в закрытой колбе над каким-либо поглотителем (вода, раствор щелочи, перекись водорода) в присутствии платины как катализатора. Продукты разложения количественно поглощают раствором и определяют галоген одним из существующих методов. [c.310]

    При использовании кинетического принципа сжигания предварительно создается однородная газовоздушная смесь. Для такой смеси характерен постоянный избыток воздуха, постоянная теплопроизводительность и постоянство при данной температуре смеси скорости нормального распространения пламени. Кинетический принцип сжигания в стационарных процессах получил широкое распространение только для газовых смесей. Имеются примеры однородных жидкостей, способных при разложении выделять тепловую энергию и переходить в параообразное состояние. Так, концентрированная перекись водорода при температуре около 600°С, разлагаясь в присутствии катализатора по реакции HgOg --2НгО + Оа, переходит из жидкого в газообразное состояние ( па-рогаз ). [c.114]

    Далее я пытался выяснить, оказывает ли перекись водорода, применявшаяся во всех опытах в избытке, задерживающее действие на реакцию в присутствии пероксидазы вследствие постепенного разложения катализатора. С этой целью я смешал раствор, содержащий 0.005 экв. перекиси водорода в 50 см воды, с раствором 0.001 экв. пероксидазы в 50 см через определенные промежутки времени 10 см этой смеси прибавлялись к вычисленному количеству иодистоводородной кислоты, и через 10 минут титровался освободившийся иод. Отношения концентраций те же и в опыте [c.386]

    В качестве топливного компонента концентрированная перекись водорода представляет интерес и как жидкость значительней плотности (1,34 при 20° С для 80-проц. Н2О2), и как окислитель, практически не оставляющий остатка и, при относительно малом содержании воды, быстро и полностью реагирующий со многими органическими соединениями. Она особенно удобна для применения в подводных лодках и торпедах, так как для ее хранения не требуется тяжелых контейнеров высокого давления. Перекись может быть использована путем ее разложения (в присутствии твердого катализатора) на кислород и водяной пар [c.184]

    Изучена реакция кислотного, разложения гидроперекиси фенилциклогексана в присутствии различных катализаторов. Показано, что максимальные выходы целевых продуктов достигаются в присутствии каталитической системысерная кислота и перекись водорода. [c.22]


Смотреть страницы где упоминается термин Разложение перекиси водорода в присутствии катализатор: [c.71]    [c.164]    [c.407]    [c.452]    [c.142]   
Смотреть главы в:

Руководство к лекционным демонстрациям по неорганической химии -> Разложение перекиси водорода в присутствии катализатор




ПОИСК





Смотрите так же термины и статьи:

Водорода ион перекисью водорода

Водорода перекись

Перекиси в их присутствии

Перекись водорода, разложение в присутствии

Разложение перекиси водорода в присутствии катализаторов двуокиси марганца



© 2025 chem21.info Реклама на сайте