Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время ползучести

    Время ползучести связано с временем релаксации соотношением  [c.217]

    На рис. 82 приведена кривая В статического сопротивления полиэтилена. Здесь деформация е является наибольшей относительной деформацией, полученной образцом при нагружении его и во время ползучести вплоть до прекращения последней напряжение о сообщено образцу при его нагружении. Для сравнения на этой же диаграмме приведена обычная кривая растяжения (кривая С), [c.89]


    То, что повышение температуры модели приводит к увеличению вязкоупругости, подтверждается постепенным изменением наблюдаемой картины полос (во время ползучести модели при одноосном растяжении в отдельных точках происходит относительное повышение порядка полос). При достаточно высоком номинальном напряжении заметно постепенное образование разрывов в тех участках модели, где порядок полос был исключительно высоким. Модель при некотором расположении участков разрушения в ней может быть резко искривлена, но продолжать нести нагрузку может быть полностью разорвана в ней могут сразу или постепенно разорваться некоторые внутренние связи без полного ее разрушения. Эти процессы весьма избирательны и в реальных материалах не менее сложны. [c.280]

    Третий режим нагружения осуществлялся на установке, специально сконструированной для исследования ползучести [6]. В этом случае варьировалось напряжение г у, а время ползучести было значительно более длительным, чем при втором режиме. [c.161]

    Вследствие повреждения фланцев и прокладок нарушается плотность соединений при выходе из строя подвесок и опор трубопроводы могут провисать при некачественной сварке или износе возможны утечки продукта через сварные соединения. Кроме того, трубопроводы могут забиваться твердыми отложениями (коксом, парафином и др.) и ледяными пробками (в зимнее время). При транспортировании водорода стальные трубопроводы могут подвергаться обезуглероживанию. Нарушения технологического режима (превышение давления, температуры) способствуют более интенсивному износу или аварийному выходу из строя трубопроводов при воздействии высокой температуры (выше проектной) наблюдается явление ползучести материала трубопроводов. [c.237]

    Ползучестью называют способность стали медленно, непрерывно, пластически деформироваться под действием постоянной нагрузки при высоких температурах. Испытания на ползучесть проводят в специальных электропечах, где образец выдерживают длительное время при определенной температуре под действием постоянной нагрузки. Время испытания обычно составляет 2000— 3000 ч, но может быть и больше. При испытании измеряют деформацию образца. По результатам испытаний вычисляют скорость ползучести. [c.9]

    Пределом ползучести (условным) называют напряжение, которое вызывает общую деформацию ползучести 1% (А/ = 0,010 за определенное время (обычно т равно 10 или 10 ч). Следовательно, величина предела ползучести определяется скоростью ползучести [c.9]

    Явления релаксации и ползучести различаются тем, что при релаксации общая деформация детали постоянна, а напряжение в ней падает, в то время как при ползучести напряжение постоянно при непрерывно нарастающей деформации. [c.11]


    НЫХ материалов и для разных условий, может быть различной, но в последующее время в течение длительного периода она последовательно уменьшается по кривым, несколько отличающимся для разных материалов, приближаясь к тому или другому значению остаточной (в данных условиях) деформации. Эти соотношения показывают, что деформация материала иа участке о— ь обусловленная его ползучестью, включает в себя компоненты и упругой, и пластической деформации. [c.587]

    Время разрушения при ползучести [c.28]

    Допускаемый размах деформации [е] принимают по рис. 17.11 в зависимости от числа циклов нагружения или числа теплосмен М) за время всего срока службы аппарата, если расчетная температура трубной решетки не превышает значений, при которых должна быть учтена ползучесть материала. [c.373]

    Зависимость 1п — т дает прямую линию прп больших значениях т, пз которой могут быть вычислены время отдельного запаздывания (т ) и деформация ползучести I [c.218]

    Эти значения подставляют в уравнение (IV.27). Если оно не точно описывает форму экспериментальной кривой, следует построить зависимость 1п Q — — т, чтобы определить значение времени второго запаздывания [х ) и второй деформации ползучести (/г)-Этот график также должен быть линейным прп больших значениях т и условии, что >Т2- Подобно этому, если оказывается необходимым, может быть определено время третьего запаздывания (Тз) путем построения зависимости 1и Q — отт. [c.218]

    К недостаткам этих методов исследования следует отнести также произвольный выбор времени взаимодействия промывочных жидкостей с образцами глинистых пород. Обычно деформационные кривые или кривые ползучести строят за период времени несколько часов, иногда несколько суток, в то время как обвалы или осыпи в скважинах начинаются порой через период времени, больший на порядок и выше, чем период таких исследований. [c.90]

    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]

    Ослабление при ползучести присуще не только термопластичным материалам. В качестве примера в гл. 1 приведены морфологические структуры разрушения при ползучести труб из ПВХ, подверженных воздействию различных по величине напряжений. При достаточно высоких напряжениях (а = = 50 МПа) имеет место небольшая деформация ползучести, а ослабление труб из ПВХ оказывается хрупким. В таком случае говорят о прочностной долговечности при хрупком разрушении (рис. 1.1). При умеренных значениях напряжения (42 МПа), действующего продолжительное время, трубы подвергаются сильной пластической деформации, т. е. в таком случае говорят о деформационной долговечности при вынужденной эластичности (рис. 1.2). При более низких значениях напряжения (а <20 МПа) ослабления либо не наблюдается совсем в течение времени проведения эксперимента, либо действует конкурирующий механизм образования треи ины при ползучести (рис. 1.3). [c.278]

    Прежде чем развивать гипотезу о природе образования трещины при ползучести, следует рассмотреть информацию, которая может быть получена путем расчета диаграмм напряжение—время—температура (рис. 1.4, 1.5, 3.7 и 3.11). Конечно, ее существенные особенности заключаются в том, что логарифм долговечности 1ъ в течение длительного времени линейно уменьшается с увеличением одноосного напряжения или его основной составляющей оо. Любая из этих прямых линий может быть описана выражением [c.283]


    Существует общее мнение о том, что ослабление под действием периодически повторяющейся нагрузки происходит при меньших значениях напряжения, чем напряжения при статических условиях нагружения (ползучесть) или при плавно нарастающем деформировании (вытяжка). Чем ниже уровень напряжения, при котором испытывается материал, тем большее число N циклов нагрузки он выдерживает. Однако полное время ( , которое утомляемый образец находится под нагрузкой, обычно много меньше долговечности материала при статических условиях нагружения. Поэтому перемена знака нагрузки или перерывы при нагружении ускоряют потерю работоспособности перемена знака нагрузки или перерывы между нагружениями являются элементами испытания на усталость. Можно утверждать, что эффект ускорения усталости путем перемены знака нагрузки должен быть связан с двумя характерными свойствами материала  [c.290]

    Поведение материала до разрушения может определяться линейной или нелинейной теорией упругости, сопровождаться необратимыми (пластическими) деформациями, процессами ползучести и релаксации, деформации могут быть малыми или конечными и т. д.— универсальной теории накопления повреждений и разрушения, учитывающей все упомянутые эффекты, в настоящее время не существует. [c.87]

    Релаксация напряжений и ползучесть линейных несшитых поли-меров только качественно описываются с помощью моделей Фойхта и Максвелла даже при малых напряжениях и деформациях, когда эти материалы линейно вязкоупруги. Рис. 6.6 иллюстрирует сходство и разницу между экспериментом и теорией. Основное отличие состоит в том, что предсказываемая теорией реакция материала иа приложенные извне воздействия описывается простой экспоненциальной зависимостью от времени О ( ) и J ( ), в то время как из рис. 6.6 видно, что экспериментально наблюдаемые значения О (/) н J (1) удовлетворительно аппроксимируются лишь суммой экспонент типа встречающихся в уравнениях (6.4-2) и (6.4-4). Таким образом [c.148]

    Количественным критерием оценки сопротивляемости полимеров старению является отношение величины характеристики данного свойства после экспозиции к ее величине до экспозиции. В качестве таких свойств выбирают прочность, относительное удлинение, жесткость, диэлектрические свойства. Особенно удобны характеристики, измерение которых не связано с разрушением образца (в частности, статический модуль, твердость и ползучесть), что позволяет определить кинетику процесса старения на одном образце и, следовательно, резко снизить разброс результатов измерения. Используют и абсолютные характеристики — время до появления трещин и до разрыва. [c.128]

    Так как перераспределение напряжения происходит даже при релаксации, оно несомненно должно наблюдаться во время ползучести образца при постоянной нагрузке. Замедленный хрупкий разрыв , т. е. статическая усталость, может в общем рассматриваться как макроскопическая последовательность крайне локализованных процессов релаксаций напряжения. Поле сил, в котором находятся определенные участки материала, не может ре-лаксировать так быстро, следовательно, тело накапливает энергию деформации сдвига. Зенер заметил сходство этой картины с ажурной группировкой кристаллических зерен в поликристаллических металлах, в которых селективная пластичность, наблюдаемая внутри индивидуальных зерен до нагружения тела, при его растяжении постепенно передается комплексному блоку зерно—граница зерна, который по стерическим причинам не может релак-сировать. Бики предполагал, что статическая усталость вязко-упругих стеклообразных полимеров обусловлена релаксацией сегментов, которые вызывают перераспределение напряжения в направлении определенных статических первично связанных цепей, которые, прочнее своих соседей, так как благодаря чисто случайным обстоятельствам ориентированы параллельно растягивающему усилию. [c.279]

    Во втором случае образцы нагружались с одинаковой постоянной скоростью роста угла закручивания До постоянного для всех испытанных образцов значения касательного напряжения Тд,у, затем образцы выдерживались при = onst. Время ползучести для различных образцов было существенно разным. [c.161]

    Испытание па дл]ггельную прочность проводят аналогично испытанию на ползучесть с 1011 Л1[шь разницей, что образец доводят до разрушения. Данные испытаний интерпретируются в логариф-мических координатах прямыми линиями Н 1 (рис. 4) это позволяет легко экстраполировать данные на большее время. [c.11]

    Так, для углеродистых сталей сопротивление ползучести уменьшается примерно на 20%, а для стали 15Х5М — несколько меньше. Опасно ли такое ослабление сопротивления ползучести для печных труб Многочисленными опытами доказано, что ослабление даже на 20% не оказывает существенного влияния на прочность печных труб. Это объясняется тем, что допускаемая минимальная толщина их сгенок назначается при конструировании из расчета напряжений не выше 30 МПа, в то время как допускаемое напряжение для стали 15Х5М в интервале температур 350—500 °С уменьшается только со 109 до 42 МПа. Таким образом, снижение сопротивления ползучести металла со сфероидизированиой структурой стало для печных труб не опасно. [c.194]

    Если реакционный змеевик иодверггется коррозии, толщина стенок труб уменьшается, и за время их эксплуатации т вследствие ползучести изменяется длительная прочность сталей, из которых эти трубы изготовлены. С целью учета коррозии труб представим выражение (VI-23) в виде [c.218]

    Таким образом, при расчете аппаратов, работающих продолжительное время при высоких температурах, конструктор, выбрав предварительно подхс/дящий конструктивный материал и допускаемую скорость ползучести, по таблицам или графикам (а иногда кГ непосредствепным опытом в лаборатории) устанавливает допускаемый предел ползучести. Последний и служит базой дальнейшего расчета, который во всем остальном производится как обычно. [c.341]

    Реакционные трубы эксплуатируются прп 950—1000 С и 2,0—2,5 МПа длительное время (порядка 100 тыс. ч). В условиях длительного воздействия статических нагрузок прп высокой температуре металл приобретает свойство ползучести, т. е. может давать остаточные деформации. Поэтому в расчете на прочность учитывают ползучесть металла [15], а испытания на длптельн5 ю прочность проводят в течение 8000—10 ООО ч и полученную зависимость экстра-пол1фзтот на более длительный срок. Установлено [16], что 75% среднего напряжения, вызывающего разрушение после 10 тыс. ч работы, приблизительно соответствует минимальному напряжению, вызывающему разрушение после 100 тыс. ч работы. [c.148]

    Условным пределом ползучести называется такое напряжение, которое соответствует скорости ползучести, равной 10 или 10- мм/( мм-ч), т. е. вызывает деформацию ползучести, равную 1%, за время соответственно 10 000 или 100 000 ч. В зависимости от времени деформации условный предел ползучести обозначается Стпю или 0Л1О- Он определяется опытным путем для каждой 1у арки стали и используется тогда, когда важно ограничить общую деформацию детали. [c.19]

    Таким образом, Q представляет собой отрезок между экстраполированной линейной частью кpивoii ползучести и криволинейным участком в некоторое время т. [c.218]

    Предыдущие утверждения относительно задач исследования разрушения хорошо иллюстрируются на примере твердого поливинилхлорида (ПВХ) (рис. 1.1 —1.3). Образцы труб для воды подвергаются хрупкому разрушению под действием внутреннего давления при высоком значении касательного напряжения, частично пластическому разрушению — при умеренных значениях напряжения, действующего в течение длительного времени, и разрушению, обусловленному ростом термических трещин (трещин серебра образующихся при ползучести),— при низких значениях напряжения, действующего очень длительное время. Тремя процессами, вызывающими разрушение труб в данных трех примерах, являются соответственно быстрое вытягивание дефектов, течение материала и термоактивационный рост дефектов. Во всех трех процессах элемент объема, в котором вызывается разрушение, конечен следовательно, неоднородные деформации должны быть локальными. Ниже мы рассмотрим природу подобной неоднородной деформации предположительно однородного материала и попытаемся объяснить ее. [c.10]

    Согласно теории Буше—Халпина [69], разрушение эластомеров определяется ограниченной вязкоупругой растяжимостью каучукоподобных нитей. Авторы данной концепции предполагают, что большая часть волокон на вершине растущей трещины натянута до своего критического удлинения Кс,- Образец разрушается при большей деформации Хь, когда <7 волокон разорвутся за время Величины кь и Кс связаны через ползучесть материала и коэффициент концентрации напряжений. Предложенная теория позволяет рассчитать удлинение при разрыве кь, если известна ползучесть. При этом не учитывается зависимость концентрации напряжения от длины растущей трещины или уменьшения долговечности одного волокна в процессе ползучести образца. Предполагается, что все волокна придется вытянуть от практически нулевого удлинения до Кс-В первую очередь это удлинение будет влиять на численные значения д, которые можно рассчитать путем построения экспериментальных поверхностей ослабления материала. Группа из д волокон при статистическом развитии событий, когда разрушение одного из них может повлечь за собой полное разрушение последующего, определяется средней долговечностью < ь>, равной и распределением Пуассона для (ь.  [c.91]

    Скибо, Херцберг и Мансон [191] изучали характеристики роста усталостной трещины в полистироле в интервале значений коэффициента интенсивности напряжений и частоты. Образцы с нанесенным односторонним надрезом и испытываемые на растяжение компактные образцы, изготовленные из листов промышленного полистирола (с молекулярной массой 2,7-10 ), были подвергнуты циклическому нагружению с постоянной амплитудой на частотах 0,1, 1, 10 и 100 Гц, что соответствовало скоростям роста усталостной трещины от 4 10 до 4Х X10 см/цикл. При заданном значении интенсивности напряжений скорость роста усталостной трещины уменьшается с увеличением частоты, причем само уменьшение скорости роста наиболее сильно выражено при больших значениях интенсивности напряжения. Чувствительность данного полимера к частоте во всем исследованном интервале значений была объяснена влиянием переменной компоненты ползучести. В макроскопическом масштабе поверхность разрушения была двух различных типов. Прп низких значениях интенсивности напряжений наблюдалась зеркальная поверхность с высокой отражательной способностью, которая с увеличением интенсивности напряжения превращалась в шероховатую матовую поверхность. Повышая частоту, сдвигали переход между этими типами поверхности разрушения в сторону более высоких значений интенсивности напряжений. Микроскопическое исследование зеркальной поверхности выявило распространение обычной трещины вдоль одной трещины серебра, в то время как исследование шероховатой поверхности выявляло рост обычной трещины через большое число трещин серебра, причем все они в среднем были перпендикулярны оси приложенного напряжения. Электронное фракто-графическое исследование зеркальной области выявило много параллельных полос, перпендикулярных направлению роста обычной трещины, каждая из которых формировалась в процессе ее прерывистого роста в ряде усталостных циклов. Размер таких полос соответствовал размеру пластической зоны у вершины трещины, рассчитанной по модели Дагдейла. При высоких значениях интенсивности напряжений была получена новая система параллельных следов в матовой области, которая соответствовала приращению длины трещины за один цикл нагружения [191]. [c.412]

    Полимерные и композиционные материалы относятся — в соответствии с принятой в настоящее время терминологией [32] — к классу матерпалов с длинной памятью. Это означает, что напряжения в данной частпце в данный момент времени зависят не только от текущих значений деформаций, температуры и других определяющих параметров, но и от значений этих параметров во все предшествующие моменты времени — от истории процесса деформирования данной частицы. Зависимость от истории процесса проявляется, в частности, в том, что в простейших экспериментах на чпстое растяжение имеют место такие явления, как ползучесть и релаксация (ползучестью называют процесс изменения во времени деформаций при иензменных напряжениях, релаксацией — процесс изменения напряжений во времени при неизменных деформациях). [c.53]

    Напряженно-временная аналогия, Псследовапия ползучести различных нолимерпых материалов показали, что прп увеличе-ипп напряжений время релаксации уменьшается. Физические основы этого явления былн раскрыты еще в середине 30-х годов А. П. Александровым и Ю. С. Лазуркпным, установившими функциональную связь т и о  [c.61]

    Метод напряженно-временной аналогии не требует сложного испытательного оборудования и позволяет при минимальных затратах получить необходимые опытные данные. На основании этих данных можно прогнозировать длительную ползучесть материала на большие времена упрен дения. Однако этот метод 5 л. с. Кравчук и др. [c.65]

    В режиме а = onst работает прибор модели 2027 ДПР (рис. 5.4) для определения долговечности и ползучести резин в жидких агрессивных средах. Испытуемые образцы S устанавливают в захваты 2 и 4, навешивают на тягу 5 и вставляют в пазы держателя /. В испытательную камеру — стакан /5 заливают агрессивную сред> и термостат 14 соединяют с форкамерой О. Среда нагревается до заданной температуры. По истечении 5 мин кнопками "нагрузка" на пульте управления включают механизмы нагружения и прибор, регистрирующий зависимость деформация-время. [c.52]


Смотреть страницы где упоминается термин Время ползучести: [c.216]    [c.34]    [c.11]    [c.283]    [c.584]    [c.23]    [c.377]    [c.217]    [c.280]    [c.280]    [c.286]    [c.248]    [c.41]    [c.59]   
Физика полимеров (1990) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Ползучесть



© 2025 chem21.info Реклама на сайте