Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неоднородность поверхности, типы

    Я. Б. Зельдович, идя этим путем, нашел, что если число центров данного сорта экспоненциально зависит от энергии адсорбции на них, то эта сумма преобразуется в уравнение типа уравнения Фрейндлиха. В настояш,ее время учение об адсорбции на неоднородных поверхностях представляет собой большую и хорошо разработанную главу теории адсорбции. [c.221]


    В статистической теории активных поверхностей скрыты весьма большие возможности, ждущие своего исследователя. Совершенно очевидно, что однородность или неоднородность поверхности, а для неоднородных поверхностей — тип распределения, имеет хотя и це непосредственное отношение к оценке качества контактов. Применяемые для этого в лучших работах величины экспериментально наблюдаемых констант скоростей и энергий активаций не дают достаточно полной характеристики катализатора. Единообразие участков при оптимальных значениях кинетических и адсорбционных констант является преимуществом, но в этом случае велика вероятность несовпадения свойств контакта с желаемыми, что влечет за собой полное отсутствие активности. Напротив, для широко неоднородных поверхностей значительно больше вероятность того, что хотя одна какая-нибудь группа участков будет обладать желаемыми свойствами. Такие поверхности должны быть менее чувствительными и более устойчивыми к влиянию ядов Между однородными и широко неоднородными поверхностями должна быть существенная для сложных реакций разница в специфичности. [c.124]

    В зависимости от характера распределения участков но теп-лотам адсорбции и энергиям активации на неоднородных поверхностях реализуется тот или иной тип адсорбционного равновесия. Основные используемые для практических расчетов изотермы, изобары и дифференциальные теплоты адсорбции на неоднородных поверхностях систематизированы в табл. 3.2 [71]. [c.151]

    Зависимость степени отравления катализатора от количества поглощенного им яда для многих случаев в широких пределах имеет линейный характер. Типичная кривая отравления катализатора с широким интервалом линейной зависимости представлена на рис. 1.11. Однако при неоднородности поверхности кривая отравления может иметь значительные отклонения от линейности. Величина отклонения зависит от типа функции распределения поверхности по теплотам адсорбции и от функции взаимосвязи теплоты адсорбции яда II энергии активации реакции. [c.56]

    Тип боковых цепей, радикалов, прочность их связей и отношение неупорядоченной части к упорядоченной в направлении Ьа обусловливает склонность углерода к химическим реакциям, а размер и упорядоченность кристаллитов углерода перпендикулярно к этому направлению (по Ьс) определяет его физические свойства (адсорбционную способность, энергетическую неоднородность поверхности, внутреннюю поверхность, пористость, тепло- и электропроводность и др.). По мере протекания химических реакций, сопровождающихся увеличением упорядочения по Ьа, непрерывно изменяются физико-химические свойства углерода, которые, в свою очередь, влияют на склонность и характер деструктивных процессов, протекающих на поверхностных слоях углерода. [c.53]


    Прн исследовании в ультрафиолетовом свете распада перекиси водорода над платиной наблюдаются электронные потоки от более активных к менее активным частям поверхности. Хорошей иллюстрацией неоднородности поверхности является также десорбция кислорода с активированного угля. Оказывается, что небольшую часть кислорода можно десорбировать простым откачиванием в высоком вакууме значительная часть кислорода удаляется в виде Oj, тогда как в вакууме при нагревании десорбируется смесь O-f +С0.2. Эти явления показывают, что поверхность угля неравноценна и на ней существует по меньшей мере три типа различных участков, удерживающих кислород с неодинаковой прочностью. Наконец, сложность поверхности катализаторов очевидна и из факта существования определенной сорбционной емкости, т. е. способности одной и той же поверхности адсорбировать различные количества газов. Так, например, 1 см угля может адсорбировать 0,227 м.г гелия, 1,67 мл аргона, 2,35 мл азота, 2,5 мл кислорода, 3,5 мл окиси [c.108]

    Типы распределений Q я Е могут быть очень разнообразны в зависимости от условий подготовки поверхности (генезис), от условий работы и др. поэтому С. 3. Рогинский вводит термин широко неоднородные поверхности , указывая, что вопрос широких распределений еще таит много неясностей, к которым можно отнести связь статистики с промотированием, модифицированием, пересыщением, размерностью активных зон и т. д. [c.156]

    Представление о существовании на поверхности металла очень широкого спектра энергетически различных адсорбционных центров требует физического обоснования, хотя небольшое число разных типов адсорбционных центров на твердой поверхности имеется всегда (например, ребра, грани, дефекты решетки). Эти центры обусловливают так называемую биографическую неоднородность поверхности. Иногда этих центров может оказаться достаточным для объяснения наблюдаемой экспериментально логарифмической изотермы адсорбции. Действительно, как было показано при помощи расчетов на ЭВМ, суммирование всего пяти изотерм Лэнгмюра с различными параметрами приводит к изотерме, мало отличающейся от логарифмической. Одновременно были предприняты попытки объяснить экспериментально наблюдаемую логарифмическую изотерму адсорбции на основе модели поверхностного электронного газа. [c.77]

    Можно показать для равномерной неоднородности па основе уравнения (3.16), а в обш,ем виде и для других типов неоднородности на основе уравнения (3.11), что в областях малых и больших заполнений на неоднородных поверхностях вид зависимостей 6 от Са сохраняется таким же, как и для идеального адсорбированного слоя  [c.91]

    Для описания адсорбции углеводородов на Pt в литературе иопользованы как уравнения адсорбции на неоднородных поверхностях (Р. X. Бурштейн, А. Г. Пшеничников, Б. И. Подловченко и др.), так и лэнгмюровские уравнения кинетики адсорбции, отвечающие л-местной адсорбции, типа(1 — б)" (С. Гиль- [c.105]

    Рассмотренный случай, когда залакированный реактивный диск расположен в центре вращающегося электрода и активный участок кольцом окружает его, представляет собой простейший вид неоднородности, который можно строго проанализировать теоретически. Значительно более распространена неоднородность, при которой активные центры располагаются на поверхности в виде небольших участков. Строгий теоретический анализ процессов, протекающих по механизму смешанной кинетики на неоднородной поверхности указанного типа, затруднен. Поэтому обычно для этой цели используются различные модели. [c.136]

    Уравнение (4.37) предсказывает, что в этих условиях в координатах 1// . 1/со должна наблюдаться линейная зависимость, не проходящая, однако, через начало координат и отсекающая на оси токов отрезок, величина которого зависит от степени покрытия электрода активными участками, их размеров и коэффициента диффузии. Следует отметить, что такого же типа зависимость получается и для однородной поверхности диска, если электродной реакции предшествует медленная химическая реакция в объеме раствора. Различить эти два случая можно, анализируя зависимость величины отсекаемого отрезка от коэффициента диффузии для диска с неоднородной поверхностью эта величина обратно пропорциональна коэффициенту диффузии, в то время как при протекании предшествующей реакции такая зависимость не наблюдается. [c.137]

    Изотерма адсорбции Лэнгмюра относится к идеальному адсорбционному слою. Изотермы такого типа встречаются часто, но для реальных систем столь же вероятны отклонения от изотермы Лэнгмюра. Эти отклонения связаны с введенными при выводе изотермы допущениями об однородности поверхности и об отсутствии взаимодействия между адсорбированными молекулами. Для катализаторов или сорбентов адсорбция осуществляется или на неоднородных поверхностях, или при взаимодействии между адсорбированными молекулами. [c.42]

    Если пренебречь 1/а1п С, то в результате получается логарифмическая изотерма адсорбции. Наконец, при определенных значениях констант а и 1 1 получаем уравнение Фрейндлиха. В связи с этим возникла острая необходимость в развитии экспериментальных методов, которые позволили бы отличать эффекты неоднородности от эффектов отталкивания. Это тем более необходимо, поскольку кинетика гетерогенных процессов описывается уравнениями, исходящими из адсорбционных изотерм. Поэтому вопрос о наличии неоднородности поверхности или сил отталкивания, возможность выбора между ними или же возможность учета обоих типов эффектов приобретает важное значение не только для теории и механизма адсорбции, но и для определения механизма каталитических реакций. [c.53]


    Можно установить определенное соответствие между типом неоднородности и типом силовых взаимодействий. Существенное значение при этом имеет область заполнений поверхности. Любые взаимодействия в слое усиливаются с ростом заполнения и падают с его уменьшением. Наоборот, неоднородность особенно сильно проявляется при малых заполнениях. Поэтому, создав условия, при которых заполнение поверхности достаточно мало, в зависимости от сохранения или исчезновения закономерностей можно отдать предпочтение или модели однородной поверхности, или модели широко неоднородной поверхности. Однако работа с весьма малыми заполнениями трудно осуществляется экспериментально в связи с небольшими тепловыми эффектами. [c.53]

    Более прямой путь выбора между неоднородностью и отталкиванием связан с существенными физическими различиями в состоянии адсорбированных молекул. Для этого необходимо рассмотреть различия между адсорбцией в двух предельных состояниях широко неоднородной поверхности без взаимодействия и взаимодействия иа полностью однородной поверхности. Это может служить основой для разбора более трудного и общего случая наложения эффектов обоих типов, т. е. взаимодействия в слое на неоднородной поверхности. На рис. 9 приведена схема адсорбции на поверхности, неоднородной по теплотам адсорбции и энергиям активации адсорбции. Номерами отмечена последовательность заполнения поверхности сорбтивом в порядке термодинамической (а) и кинетической (б) выгодности. В представленном предельном случае энергетический рельеф поверхности не меняется, но происходит [c.53]

    Применение дифференциального изотопного метода для реакции в адсорбированном слое дает не только подтверждение неоднородности поверхности, но и ценные сведения а свойствах различных участков поверхности катализатора. Однако дифференциальному изотопному методу свойствен и ряд недостатков. Это только качественный метод, не дающий типа функции распределения по АЯ. При снятии разных порций при различных заполнениях поверхности возможно наложение эффектов, связанных с отталкиванием. [c.56]

    На неоднородной поверхности скорость изотопного обмена должна подчиняться одному из порядков, соответствующих типу функции распределения по энергиям активации. [c.56]

    Согласно Тейлору реакции протекают на особых местах поверхности катализатора, так называемых активных центрах. Даже в чистом металле дтомы, расположенные на дефектах решетки, на реС рах и вершинах кристаллитов, ведут себя иначе, чем атомы, расположенные на плоской поверхности. Неоднородность поверхности характеризуют различными методами, изучением зависимостей дифферешщальной теплоты адсорбции или энергии активации при термодесорб1лии от степени заполнения. На изобарах адсорбции может наблюдаться несколько максимумов, что свидетельствует о наличии нескольких типов хемосорбции. В некоторых случаях неоднородность катализатора можно измерить индикаторами Гаммета, другими основаниями, с помощью инфракрасного спектра для выявления числа и силы кислотных центров. В случае бифункциональных катализаторов подбором соответствующих ядов можно оценить соотношение шФаллических и кислотных центров. Центрами могут служить группы или кластеры [c.90]

    В настоящее время в катализе не решен вопрос о природе активной поверхности. Экспериментальное подтверждение неоднородности поверхности катализаторов в то же время доказывает наличие на поверхности участков различной активности, Рогинский считает, что всякого рода физическая неоднородность поверхности неустойчива в условиях катализа физические нарушения кристаллической решетки неустойчивы во времени и особенно под воздействием температуры. Неустойчивость физической неоднородности особенно проявляется на пленках чистых металлов, конденсированных из вакуума на поверхности и охлажденных до температуры жидкого воздуха. Такого типа пленки характеризуются высокой дисперсностью, их физические свойства свидетельствуют о значительной неупорядоченности структуры. [c.126]

    При произвольном распределении яда по поверхности активных участков мало, и количество яда, попавшего на эти участки, также мало. Напротив, неактивных участков много, соответственно на эти участки попадает большое количество яда. Контролирующая полоса при увеличении количества яда перемещается снизу вверх. Тогда количество активных центров, участвующих в реакции, меняется пропорционально количеству нанесенного яда. Единственным результатом отравления будет снижение в (1—аС) раз числа участков любого типа без изменения энергии активации, порядка реакции и прочих особенностей процесса. Вследствие этого будет наблюдаться пропорциональное уменьшение активности с концентрацией яда и, таким образом, неоднородные поверхности будут имитировать однородные. [c.131]

    При отравлении неоднородных поверхностей появляются новые типы функций (степенная, экспоненциальная и т. д.), выражающих изменение активности контакта от количества поглощенного яда. [c.132]

    Процесс коррозии может протекать по гомогенно-электрохимическому и гетерогенно-электрохимическому механизмам. Для жидких металлов, амальгам и чистых твердых металлов, поверхность которых эквипотенциальна, в любой точке поверхности могут происходить катодный или анодный процессы, скорости которых равны. При наличии на поверхности металла фаз с разными термодинамическими свойствами происходит пространственное разделение катодного и анодного процесса (гетерогенный механизм), возникают так называемые локальные элементы. Как правило, анодный процесс локализуется на менее благородной фазе. Причины возникновения электрохимической неоднородности н типы коррозионных гальванических элементов приведены в табл. 2.3. [c.17]

    Наблюдаемый в действительности контраст является сложной сверткой свойств взаимодействия пучок — образец и свойств детектора. Мы рассмотрим, как возникает контраст при регистрации с каждым типом детектора, считая представителем широкого класса объектов с неоднородной поверхностью образец с фасеточной поверхностью излома, показанной на рис. 4.10. [c.144]

    Методы составлений кинетических уравнений (моделей 1 гетерогенных каталитических реакций. Как правило, многие гетерогенные каталитические реакции (как ионного, так и электронного типов) удовлетворительно описываются кинетическими уравнениями первого порядка (особенно в области малых заполнений поверхности катализатора). Это, по-видимому, обусловливается тем, что лимитирующей суммарный каталитический процесс стадией является хемосорбция на однородной поверхности катализатора, осуществляемая мономолекулярно. При этом первый кинетический порядок имеет место обычно независимо от того, осуществляется ли хемосорбция по одноцентровому или многоцентровому (в виде мультиплетов, ансамблей и др.) механизмам. Установлено, что большее влияние на кинетический порядок каталитических реакций оказывает неоднородность поверхности. В ряде случаев большая адекватность достигается при использовании кинетических уравнений (моделей), выведенных исходя из представлений неоднородности поверхности (С.З.Рогинский, Я.Б.Зельдович, М.И.Темкин и др.). [c.434]

    При неоднородной поверхности на степень заполнения влияют как различие в величинах коэффициента конденсации, так и различие в теплотах адсорбции. Поэтому в уравнении адсорбции типа уравнения Лангмюра для разных участков величины Ь неодинаковы. [c.50]

    Сущность и особенности физико-химических процессов распределений в газо-адсорбционной хроматографии. Непористые и пористые адсорбентьь применяемые в газовой хроматографии. Роль геометрической структуры адсорбента. Молекулярные сита. Неспецифические и специфические адсорбенты разных типов, роль химической природы поверхности адсорбента. Пористые полимеры. Вредное влияние неоднородности поверхности твердого тела и способы его ослабления. Способы улучщения разделения и достижения большей симметрии пика. Непористые адсорбенты. Пористые и макропористые адсорбенты, соотношение между удельной поверхностью и размерами пор. Химическое и адсорбционное модифицирование поверхности адсорбентов. Выбор оптимальной геометрической структуры и химии поверхности для разделения конкретных смесей. [c.297]

    Профилограф-профилометр типа 201 (рис. 2J), действие которого основано на принципе ощупывания поверхности покрытий алмазной иглой с весьма малым радиусом закругления и преоб ования колебаний иглы в измеиение напряжения индуктивным методам. Профилограф-профилометр - высокочувствительный прибор, позволяющий воспроизводить иа электротермической диаграммной бумаге линию неоднородности поверхности с вертикальным увеличением от 1000 до 2000 и с горизонта тм увеличением от 2 до 4000. [c.71]

    При приготовлении твердых адсорбентов полностью устранить геометрическую и химическую неоднородность поверхности не удается. Однако при синтезе и обработке адсорбента эту неоднородность можно сильно снизить и в благоприятных случаях сделать настолько незначительной, что ее влиянием на адсорбцию при не очень низких температурах можно пренебречь, особенно по отношению к молекулам, неспособным к специфическим взаимодействиям (т. е. к молекулам группы А). В настоящее время многие адсорбенты всех трех типов могут быть получены и обработаны в таких условиях, которые гарантируют достаточно низкую неоднородность поверхности (в случае кристаллов — поверхности их граней). Это позволяет успешно использовать такие адсорбенты для практических целей разделения смесей в газовой и жидкостной адсорбционной хроматографии и для получения термодинамических характеристик адсорбции индивидуальных веществ в виде воспроизводимых констант. [c.24]

    Типы неоднородностей. Простейшей моделью неоднородной поверхности является равномерно неоднородная поверхность [19]. В ней предполагается, что на поверхности имеется одинаковое число участков разных сортов, т.е. распределение по теплотам адсорбции является равномерным. Такой модели отвечает линейное падение теплоты адсорбции Q s) = (5(0) — Сз, где (5(0) — значение теплоты адсорбции для участков с максимальной энергией связи, С — постоянная величина, равная разности между максимальным и минимальным значениями теплоты адсорбции (С — (5(0) — (5(1))- Константа равновесия процесса адсорбции-десорбции для участков поверхности с данной теплотой адсорбции Q s) будет К з) = К 0)е , где К 0) [c.28]

    Естественно, что при проведении более детальных исследований, учитывающих неоднородность поверхности водосбора, применяются специальные коэффициенты переноса типа представленных в табл. 7.3.3. [c.284]

    Теория замедленной рекомбинации была обобщерга в работах Гориучи с сотр. (1936—1938), И. И. Кобозева с сотр. (1937—1946), М. И. Темкина (1941) и др. Из этих работ следует, что учет неоднородности поверхности и сил взаимодействия между адсорбированными атомами приводит к пояЕлению в предлогарифмнческом коэффициенте уравнения (19.31) множителя 1/ 3. Фактор р можно рассматривать как величину, характеризующую природу адсорбции водородных атомов и отражающую тип изотермы адсорбции. [c.410]

    Окислительно — восстановительные реакции. Из двух перечисленных выше типов реакций в гетерогенном катализе наиболее изучены окислительно — восстановительные. Они широко использовались как модельные реакции при разработке многих частных теорий катализа (промежуточных химических соединений Сабатье и В.Н. Ипатьева, мультиплетной теории A.A. Баландина, активных ансамблей Н.И. Кобозева, неоднородной поверхности Р.З. Рогин — ского, химической концепции катализа Г.К. Борескова и др.) и в особе нности при решении центральной проблемы в гетерогенном ката изе — проблемы предвидения каталитического действия. Успешное ее решение позволит создать научную основу подбора оптимальных катализаторов и разработать единую теорию катализа, обла/,,ающую главным достоинством — способностью предсказывать, а не только удовлетворительно объяснять наблюдаемые от — делььые факты. [c.159]

    Прн некоторых аналитических видах зависимости I(Q) интеграл (XIII, 13) или не берется в конечном виде в элементарных функциях, или получаемые выражения громоздки и неудобны для практического применения. Поэтому в теории процессов на неоднородных поверхностях важную роль играют методы приближенного решения уравнений типа (XIII, 13). Остановимся на методе приближения, развитом в исследованиях С. 3. Рогинского. [c.348]

    Как мы видели в разделе VI, 2, физическая адсорбция обычных газов на ионных поверхностях происходит вследствие совместного действия сил Ван-дер-Ваальса и поляризации молекул электрическими полями поверхности. Активные центры (раздел V, 12) оказывают влияние на оба эти эффекта. Поэтому реальные неоднородные поверхности ионных адсорбентов, состоящие из различных кристаллографических граней, межкристаллитных границ, ребер, вака.нтных мест и других типов активных участков, будут практически во всех случаях адсорбировать первые молекулы с относительно большой теплотой адсорбции. С увеличением степени заполнения теплота адсорбции будет заметно уменьшаться [177]. Крофорд и Томпкинс [178] при изучении адсорбции сернистого газа, двуокиси углерода и других газов на фтористом кальции и фтористом барии нашли, что теплоты адсорбции уменьшаются с увеличением количества адсорбированного газа. Они приписывают этот эффект неоднородности исследованных поверхностей, а также наличию различных кристаллографических плоскостей. [c.112]

    На других металлах группы платины в работах В. С. Багоц-кого, Ю. Б. Васильева и сотр. были получены иного типа кинетические уравнения, формально отвечающие другим видам неоднородности поверхности. Так, на иридии процесс адсорбции метанола подчиняется зависимостям, отвечающим экспоненциально неоднородной. поверхности (3.36). На гладком родии адсорбцию метанола а первом приближении можно описать двумя кинетическими изотермами Темкина. [c.105]

    Характер тангенциального движения определяется степенью энергетиче- ской неоднородности поверхности, чередованием в решетке мест с энергией выше и ниже среднего значения Е. Так, в кубической решетке (рис. VIII.6) молекула адсорбата в точке А связана с четырьмя атомами адсорбента. Для перемещения в симметричную позицию А молекула должна преодолеть потенциальный барьер наименьшая его высота отвечает позиции В, где молекула связана с двумя атомами, и Еа оказывается примерно вдвое меньшей, чем в А и А (и минимальной в точке С). Для перехода А— В—А молекула должна обладать энергией, большей или равной АЕа = Е — E . Применяя для АЕа, имеющей смысл энергии активации, тот же метод, получим, что время задержки в позициях типа А равно  [c.135]

    Теория БЭТ дает простое и последовательное описание процессов физической адсорбции и объясняет пять типов изотерм рис. 9. Вместе с тем в последние годы все сильнее прбявляется несовершенство теоретической базы метода БЭТ, поскольку всякая теория, игнорирующая взаимодействие между частицами в одном слое (латеральное взаимодействие) и неоднородность поверхности, считается ограниченной. Самым слабым местом теории БЭТ является основное положение, согласно которому теплоты адсорбции во втором и последующих, слоях равны теплоте сжижения пара. Более приемлемым считается допущение, что третий и последующие слои адсорбата подобны жидкости [21]. [c.30]

    Еще слишком рано говорить о том, будет ли на основе этого нового метода создан общий метод определения удельной поверхности. Достигнутые успехи позволяют надеяться, что этот метод даст возможность учесть одновременно и влияние неоднородности поверхности и межмолекулярное притяжение в адсорбционном слое. Поэтому с интересом следует ожидать дальнейших результатов. Однако следует иомнить, что все толкования основаны на постулате о протекании лишь мономолекулярной адсорбции в интересующей нас области изотермы. Это может быть вполне обоснованным, когда чистая теплота адсорбции q—L) высока (резкий подъем изотермы, высокие значения с эт ) так, метод применим для области низких относительных давлений. Но ири рассмотрении систем с низкой теплотой адсорбции (постепенный рост адсорбции, изотерма П1 типа) возникают сомнения в правильности этого постулата. А в тех случаях, когда заметная полимолекулярная адсорбция происходит прежде, чем закончится образование плотного монослоя, модель де Бура-Хилла неприменима. [c.282]

    Это уравнение можно проинтегрировать в предположении, что при переходе от одного места неоднородной поверхности к другому значения коэффициентов скоростей связаны с соответствующими константами равновесия соотношениями типа Бернстеда [19]. Для адсорбционно-десорбционной стадии это означает, что [c.30]

    М.И.Темкиным были выведены кинетические уравнения для скорости каталитической реакции на неоднородной поверхности, охва-тываюгцие все три указанных выше типа неоднородности. Например, для схемы реакции А В такое уравнение имеет вид [c.31]


Смотреть страницы где упоминается термин Неоднородность поверхности, типы: [c.155]    [c.85]    [c.54]    [c.64]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.25 ]




ПОИСК







© 2025 chem21.info Реклама на сайте