Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород транспортирование

    Синтетические цеолиты, получившие название молекулярных сит, обладают интересными структурными особенностями и специфическими свойствами. Одним из наиболее замечательных свойств цеолитов является их способность к избирательной адсорбции. Они иред-ставляют собой новое эффективное средство для осушки, очистки и разделения углеводородных и других смесей (газообразных и жидких) с целью получения чистых и сверхчистых веществ. Цеолиты применяют для извлечения из газовой смеси непредельных углеводородов (этилена), для очистки этилена от примесей ацетилена и двуокиси углерода, для очистки изопентана от примесей к-пентана, для разделения азеотропных смесей (метилового спирта и ацетона, сероуглерода и ацетона) и смесей, содержащих неорганические вещества (сероводород, аммиак, хлористый водород) и т. д. Они используются также для повышения антидетонационных свойств бензинов нутем избирательной адсорбции из них нормальных парафиновых углеводородов, а также для выделения ароматических углеводородов из смесей углеводородов с близкими физико-химическими константами, например извлечение бензола из смеси его с циклогексаном. В качестве осушителей цеолиты являются незаменимыми при наземном транспортировании газов в условиях севера и особенно при осушке трансформаторных масел. [c.12]


    Водород. Свойства, получение, хранение, транспортирование, применение  [c.255]

    Как только адсорбент насыщается поглощаемым компонентом, проводят его регенерацию. Адсорбционная очистка водорода представляет собой циклический процесс поглощения и регенерации. В принципе такой циклический процесс можно проводить в разных аппаратах, организовав перемещение — циркуляцию — адсорбента. Однако транспортирование больших количеств твердого и часто непрочного адсорбента представляет собой сложную инженерную задачу [10, с. 266], особенно при значительном различии давлений в адсорбере и регенераторе. В настоящее время очистку водорода проводят в стационарном слое адсорбента циклическим переключением аппаратов, чередуя периоды адсорбции и регенерации. Поэтому устанавливают обычно три или четыре адсорбера. [c.52]

    ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ ХЛОРИСТОЮ ВОДОРОДА И СОЛЯНОЙ КИСЛОТЫ [c.96]

    Вследствие повреждения фланцев и прокладок нарушается плотность соединений при выходе из строя подвесок и опор трубопроводы могут провисать при некачественной сварке или износе возможны утечки продукта через сварные соединения. Кроме того, трубопроводы могут забиваться твердыми отложениями (коксом, парафином и др.) и ледяными пробками (в зимнее время). При транспортировании водорода стальные трубопроводы могут подвергаться обезуглероживанию. Нарушения технологического режима (превышение давления, температуры) способствуют более интенсивному износу или аварийному выходу из строя трубопроводов при воздействии высокой температуры (выше проектной) наблюдается явление ползучести материала трубопроводов. [c.237]

    В книге приведены данные о различных способах получения газообразного, жидкого и других видов водорода, о его транспортировании и хранении, о совместимости с конструкционными и уплотнительными материалами, а также необходимые сведения по технике безопасности. Описаны теплофизические, оптические, электрические и магнитные свойства, термохимические и теплотехнические характеристики водорода. [c.255]

    Таким образом, в реакторных устройствах, имеющих разные степени вспенивания, для достижения одной и той же глубины процесса нужно поддерживать различные концентрации порошкообразного катализатора в жидкости путем регулирования рециркуляции пульпы катализатора. Так, при возрастании степени вспенивания рециркуляцию пульпы нужно увеличить. Кроме того, из кривых, изображенных на рис. 34—36, следует, что при постоянной подаче циркулирующего газа степень вспенивания возрастает с увеличением пропускной способности установок. Поэтому условия транспортирования водорода в установках разной производительности получаются тоже разные, а в опытных и промышленных системах они просто несопоставимы. Следовательно, ведение процесса при постоянных соотношениях сжатого газа и жидкости теоретически не обосновано. Для получения сравнимых условий на экспериментальных и промыш- [c.162]


    Баллоны для сжатых, сжиженных и растворенных газов. Баллоны — закрытые металлические сосуды небольшой вместимости, предназначенные для транспортирования и хранения сжатых (например, кислорода, водорода, азота, воздуха), сжиженных (например, углеводородных газов, хлора, аммиака, сероводорода, диоксида углерода) и растворенных (например,, ацетилена) газов. [c.56]

    Транспортирование хлористого водорода и соляной кислоты [c.99]

    Если выход летучих выше 9,0—10,0%, использование кокса затруднено, а в некоторых отраслях промышленности невозмол<но. Так, в условиях высоких температур (600—700 °С) в момент выделения максимального количества смолоподобных продуктов происходит спекание кокса с образованием коксовых пирогов , затрудняющих нормальный ход технологического процесса. Кроме того, сгорание большого количества летучих приводит к резкому повышению температуры отходящих газов и вызывает необходимость в установке громоздких сооружений для утилизации тепла дымовых газов. Из-за низкой механической прочности кокса, обусловленной высоким выходом летучих, происходит сильное дробление его и образование мелких фракций при складировании и транспортировании к потребителям. При употреблении такого кокса ухудшаются санитарно-гигиенические условия в прокалочных отделениях, а также в цехах, где производят карбид кальция, ферросплавы и др. Однако па некоторых производствах (при использовании кокса в качестве восстановителя) большое количество летучих и содержащегося в них водорода является весьма желательным. [c.142]

    Кальций, как и литий, используется для транспортирования водорода в виде гидрида кальция. При этом отношение массы тары к массе транспортируемого водорода в 10 раз меньше, чем в случае транспортирования водорода в стальных баллонах. Гидрид кальция пытались использовать для восстановления титаиа и ванадия, а кальций — для обезвоживания органических соединений. Кальций добавляют к меди для улучшения ее механических свойств и к алюминию — для улучшения электропроводности. Малая присадка кальция увеличивает твердость свинца без уменьшения его пластичности. Добавление кальция в сталь и чугун способствует удалению из них газов, серы и фосфора. [c.527]

    Для хранения водорода в больших кол( чествах в технике применяют особые стальные цилиндры, выдерживающие большое давление. Газ накачивается компрессором. Сжатый в стальных баллонах под давлением до 100 и выше атмосфер газ удобен для транспортирования на дальние расстояния. [c.623]

    Для хранения и транспортирования Н , кроме обычных методов, разработанных для жидкого и газообразного водорода, перспективно использование твердых соед.-гидридов металлов и интерметаллидов. Последние способны реагировать с большими кол-вами Hj при невысоких т-рах и давлениях (см. Гидриды). Из гидридов интерметаллидов наиб, интересны соед. иа основе Ti, Fe, Mg, Ni, La и V. Они содержат до 400 см Hj на 1 г гидрида, выделяют при сравнительно низких т-рах (150-200 С) и относительно дешевы. Для хранения гидридов интерметаллидов разработаны спец. емкости-гидридные баки. Гидриды интерметаллидов м.б. использованы, в частности, на автотранспорте. Гидридный бак устанавливается на автомобиле и обогревается отработавшими газами двигателя гидрид разлагается и выделяется водород, К-рый подается в двигатель как добавка к бензину. [c.406]

    Устройства для удаления газов электролиза и первичной их обработки предназначены для равномерного отсоса водорода и хлора из электролизеров, их охлаждения и конденсации основного количества паров воды, дальнейшей осушки газов и компримирования с последующим транспортированием по трубопроводам на переработку и использование. [c.232]

    Рассмотренный в предыдущем разделе способ получения 100%-ного НС1 ректификацией концентрированной соляной кислоты предусматривает донасыщение азеотропной соляной кислоты хлористым" водородом. Если потребитель 100%-ного хлористого водорода расположен далеко от источников абгазного НС1, производство осложняется необходимостью транспортирования большого количества соляной кислоты и перевозки в обратном направлении азеотропной кислоты для ее донасыщения. [c.506]

    Долгое время хлористый водород сжижался лишь в ограниченном количестве для удовлетворения нужд мелких потребителей в сухом чистом 100%-ном хлористом водороде. Поэтому для транспортирования его использовались стальные баллоны емкостью до 30 кг. Сообщается о выпуске технического жидкого хлористого водорода, содержащего более 99,7% НС1, не более 0,2% воды и незначительное количество инертных газов, а также особо чистого хлористого водорода, содержащего не менее 99,95%, в стальных емкостях на 5 и 500 кг, испытываемых при давлении 155 и 210 ат [95]. [c.510]

    Разработаны специальные цистерны емкостью 45 м для хранения и транспортирования жидкого хлористого водорода [96]. Цистерны, толщина стенок которых 16 мм, были рассчитаны на рабочее давление 42,2 кгс/см , и снабжены тепловой изоляцией толщиной 250 мм. [c.510]

    В связи со значительными затратами на сжижение и транспортирование жидкого хлористого водорода трудно предполагать, чтобы в ближайшее время он нашел применение в масштабах, близких к масштабам использования жидкого хлора. [c.511]


    В процессе приготовления плава при загрузке и отгонке хлористого алюминия в реторту также непрерывно подают азот для предотвращения образования взрывоопасной смеси кислорода и водорода. Водород выделяется при взаимодействии HG1 и алюминия. Хлористый водород в свою очередь образуется при действии на хлористый алюминий влаги, вносимой в реторту с загружаемым сырьем или в результате подсоса влажного воздуха. Продувка азотом улучшает транспортирование паров очищенного хлористого алюминия. [c.525]

    Скорость газофазной реакции (при гидроочистке легких нефтяных фракций) возрастает с увеличением парциального давления водорода примерно до 2—3 МПа и далее почти не меняется. В жидкофазном процессе (при очистке высококипящих фракций) повышение давления водорода до очень высоких значений увеличивает скорость реакции, ускоряя транспортирование водорода через пленку жидкости к поверхности катализатора. Предел повышения давления обычно ограничивается удорожанием оборудования и составляет 7—8 МПа. [c.376]

    Порядок реакций гидрообессеривания по водороду (п ) может быть также различным в зависимости от свойств сырья и условий процесса. По мере роста парциального давления водорода (/ //,) газофазных процессах гидрооблагораживания 2 может изменяться от 1 до О в интервале /7// от 0,1 до 3,5 МПа (т. е. в зависимости от степени насыщения водородом поверхности катализатора). В жидкофазных процессах, в которых лимитирующей гидрообессеривание стадией является транспортирование водорода через пленку жидкости к поверхности катализатора, гидрогенолиз протекает по первому порядку по водороду вплоть до дав.дений 10 МПа. [c.307]

    В табл. 8.16 [629] приведены показатели возможного в будущем мощного производства жидкого водорода (транспортирование — танкерами). Схема основана на использовании бридеров, базирующихся на атолле в Тихом океане. В ней 10 реакторов частично НТГР, так что система может иметь коэффициент воспроизводства, равный единице. Воду для охлаждения предполагается закачивать из глубинных слоев, например при 10 °С, и выбрасывать при температуре поверхности океана, например 20 °С, так что не будет теплового выброса или теплового загрязнения, несмотря на то, что выбрасывается 40 % подводимого тепла. Лагуну атолла можно использовать как химический бак для экстракции урана из охлаждающей [c.427]

    Для наиболее распространенного вида сырья — лигроинов прямой перегонки нефти, подвергаемых каталитичеакаму риформингу, основной задачей является глубокая очистка от серы и азота, небольшое дегидрирование парафинов и циклопарафинов и гидрокрекинг значения не имеют. Чтобы обеопечить максимальную скорость очистки, можно применять м аксимальные температуры 400—420 °С. При очистке авиационных керосинов недопустимо образование олефиновых и ароматических углеводородов, а иногда необходимо и неглубокое гидрирование последних (нафталинов). При применяемых обычно парциальных давлениях водорода термодинамически возможный выход нафталина при дегидрировании декалина и тетралина резко возрастает при температурах выше 370 °С, и очистку обычно проводят при 350—360 °С. Фракции, используемые в качестве дизельного топлива, можно очищать при температурах до 400—420 °С, при дальнейшем повышении температуры в результате дегидрирования би- и полициклических нафтенов снижается цетановое число, растет выход продуктов гидрокрекинга — газа и бензина и в результате реакций гидрокрекинга резко возрастает расход водорода. Нижний предел температуры очистки определяется в этом случае возможностью конденсации тяжелых фракций сырья появление жидкой фазы резко замедляет гидрирование из-за ограничения скорости транспортирования водорода к поверхности катализатора скоростью диффузии через пленку жидкости. [c.269]

    Сырье. С утяжелением сырья степень его очистки в заданных условиях процеоса снижается. Происходит это по следующим причинам. С повышением средней молекулярной массы фракции доля серы, содержащейся в устойчивых относительно гидрирования тиофеновой, бенз-, дибензтиофеновой и подобных структурах, увеличивается. По мере утяжеления сырья (для продуктов, выкипающих выше 350 °С) все большая его часть находится в условиях гидроочистки в жидкой фазе, что затрудняет транспортирование водорода к поверхности катализатора. При жидкофазной гидроочистке с утяжелением сырья скорость диффузии водорода через пленку жидкости на катализаторе снижается, так как повышается вязкость и снижается растворимость водорода при данных условиях. Возрастание концентрации в сырье полициклических ароматических углеводородов, смол и асфальтенов, прочно адсорбирующихся на катализаторе и обладающих высокой устойчивостью относительно гидрирования, также снижает глубину очистки. Так, удаление из вакуумного гудрона 20 /о асфальтенов увеличивает кажущуюся константу скорости обессеривания более чем в 4 раза. [c.272]

    В технологических процессах, связанных с получением, переработкой и транспортированием горючих газов и паров, всегда имеется опасноспь существования взрывчатых паро-газовых систем. Так, взрывоопасные смеси могут образовываться при утечке горючих газов в атмосферу, при подсосе атмосферного воздуха в вакуумиро-ванные аппараты либо при неправильной работе технологических агрегатов, вследствие которой газовые потоки направляются в линии, для них не предназначенные. Многие технологические процессы связаны с проведением реакций между компонентами, смеси которых взрывчаты в определенном диапазоне составов. В ряде случаев регламент процесса предусматривает образование горючей смеси, например при окислительном пиролизе углеводородов. Наконец, ряд многотонпажных производств связан с синтезированием и переработкой продуктов, способных к взрывному распаду ацетилена и его гомологов, окиси этилена, закиси азота, озона, перекиси водорода и других. [c.60]

    Чуприн-И. Ф. —Транспорт и хранение нефтепродуктов и углеводородного сырья, 1974, № 7, с. 21—23. 52. Бережковский М. И. Хранение и транспортирование химических продуктов. Л. Химия, 1982. 256 с. 53. Нормы технологического проектирования и технико-экономические показатели магистральных нефтепроводов и нефтепродуктопроводов. ВСН 17—77/Миннефтепром. М., 1977. 66 с. 54. Строительные нормы и правила. Часть II. Нормы проектирования. Глава 45. Магистральные трубопроводы. СНиП П-45—75. 55. Васильев Л. В., Максакова А. П., Шнейдерман А-. 3. Сливо-наливные эстакады для светлых нефтепродуктов и сжиженных нефтяных газов. ЦНИИТЭНефтехим. 1983. 56. Г лизманенко Д. Л. Получение кислорода. М. Химия, 1972. 752 с., 57. Инструкция по проектированию производства газообразных и сжиженных продуктов разделения воздуха. ВСН 6—75/Минхимпром. 58. Воздухоразделительные установки. Правила техники безопасности при эксплуатации. ОСТ 26-04-907—76. 59. Письмен М. К. Производство водорода в нефтеперерабатывающей промышленности. М. Химия, 1976. 208 с. 60. Орочко Д. И., Сулимое А. Д., Осипов Л. Н. Гидрогенизационные процессы в нефтепереработке. М. Химия, 1971. 352 с. [c.250]

    Однако до сих пор преимущественно применяют серную кислоту. Реакции в серной кислоте аналогичны реакциям в соляной кислоте. Концентрация в ваннах травления составляет примерно 15—20% НгЗО , в непрерывных линиях травления—15—257о Н2804 при температуре 70—90° С. Эффект травления заключается главным образом в растворении вюстита и металлического железа, причем выделяющийся водород способствует отслаиванию окалины. Скорость растворения железа снижается в присутствии сульфата железа, а скорость растворения окислов железа повышается с увеличением содержания в ванне растворенного железа. Концентрация железа не должна быть выше 100 г/л. Скорость травления, например, стальных лент в современных автоматах достигает 200 м-мин . Преимущества способа низкая стоимость, значительная скорость травления при высоких температурах, небольшое количество агрессивных паров, дешевые хранение и транспортирование, малое содержание воды и возможность приготовления кислоты любой концентрации. [c.73]

    Из приведеннглх ниже результатов опытов с метаф(х фатом натрия и фенацетином следует, что раствор псрскнси водорода, стабилизированный этими пеществами, может быть транспортирован даже в тропические страны, где температурные услопия для хранения песьма неблагоприятны. [c.260]

    Так как чистая 99- 100%-,ная перекись водорода даже при просгой тряске начинает разлагаться с выделением кислорода, то ее можно перевозить по же пезной дс оге лишь к тиердом состоянии одиако, встсдриие низкой температуры замерзания, подобное транспортирование не экономично. [c.279]

    Выбор Нг как энергоносителя обусловлен рядом преимуществ, главные из к-рых экологич. безопасность Н2, поскольку продуктом его сгорания является вода, исключительно высокая ДЯ гор, равная — 143,06 МДж/кг (для условного углеводородного топлива — 29,3 МДж/кг) высокая теплопроводность, а также низкая вязкость, что очень важно при его транспортировании по трубопроводам практически неогранич. запасы сырья, если в кач-ве исходного соед. для получения рассматривать воду (содержание воды в гидросфере 1,39-Ю т) возможность многостороннего применения Н . Водород м.б. использован как топливо во многих хим. и металлургич. процессах, а также в авиации и автотранспорте как самостоятельное топливо, так и в виде добавок к моторным топливам. [c.405]

    Хотя хлористый водород в ряде методов его производства сразу получается достаточно чистым и концентрированным, он может быть использован без дополнительной очистки лишь отдельными потребителялш. Хлористый вбдород 95—99%-ный может быть получен синтезом из элементарных веществ, либо как абгазный при пиролизе хлорпродуктов, в производстве сульфанола и др. В таких случаях помимо его очистки от органических примесей требуется иногда только дополнительная сушка и компримирование газа для транспортирования и преодоления противодавления, создаваемого на участках потребления. [c.502]

    Сырье, выкипающее выше 350 °С, находится при гидрообессе-ривании в основном в жидкой фазе, и повышение давления увеличивает скорость реакций более значительно, ускоряя транспортирование водорода через пленку жидкости к поверхности катализатора. Из-за удорожания оборудования увеличение давления ограничивают в пределах до 7-8 МПа. [c.571]

    К истинно минеральным компонентам нефти относятся различны растворимые соли, образованные металлами и кислотами, а также диспергированные до коллоидного состояния минеральные вещества, вмещающие нефть пород. В нефтях идентифицировано > 40 различных элементов, главными из которых являются ванадий и никель (см. гл. 7). Однако их следует рассматривать как входящие в состав элементоорганических соединений, а не минералов. Содержание твердых минв ральных частичек в нефти не превышает обычно 1,5 %. Из присутствие в нефти затрудняет ее транспортирование по трубопроводам, вызывав износ трубопроводов, приводит к отложению твердых остатков в тепла обменной аппаратуре, что ухудшает ее работу и повышает зольносл тяжелых остатков перегонки нефти. Минеральные примеси могут быть I виде растворенных в воде солей, например хлоридов, которые гидрО лизуются при нагреве с образованием хлористого водорода. Послед ний растворяет отложения сернистого железа, защищающего поверхность трубопроводов от коррозии. Высвободившийся сероводород участвует в дальнейших процессах коррозии. [c.48]


Смотреть страницы где упоминается термин Водород транспортирование: [c.208]    [c.106]    [c.284]    [c.287]    [c.308]    [c.267]    [c.271]    [c.88]    [c.415]    [c.418]    [c.208]    [c.278]    [c.252]    [c.565]    [c.187]   
Водород свойства, получение, хранение, транспортирование, применение (1989) -- [ c.0 ]

Химические товары Том 1 Издание 3 (1967) -- [ c.48 ]




ПОИСК







© 2025 chem21.info Реклама на сайте