Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрация и энтальпия раствора

    Располагая значениями интегральной теплоты смешения при 25° С и различных концентрациях, энтальпия раствора определялась из уравнения [c.69]

    При I2 = 145° С и P, 1,35 МПа концентрация слабого раствора == 0,177, энтальпия i- = = 497 кДж/кг. [c.185]

    По уравнению (У-6) можно определять энтальпию растворов с концентрацией X, если известна теплота бесконечного разбавления этого раствора Q и энтальпия растворителя 1 при стандартной температуре. [c.375]


    Интегральная энтальпия растворения соли — это изменение энтальпии, сопровождающее процесс изотермического растворения 1 моль соли в данном количестве моль растворителя с образованием раствора концентрации гп. Значение ДЯт зависит от концентрации полученного раствора, поэтому для данной соли можно получить ряд значений ДЯт , отвечающих [c.387]

    Работа 3. Определение энтальпии гидратообразования. Навески безводной соли и кристаллогидрата рассчитывают так, чтобы при растворении массовые количества и концентрации образовавшихся растворов были одинаковы. Опыт проводится, как описано выше. Энтальпию гидратообразования рассчитывают по закону Гесса. [c.401]

    При растворении вещества теплота может поглощаться или выделяться в общем случае теплота растворения зависит от концентрации полученного раствора. Интегральная теплота растворения определяется как изменение энтальпии при растворении 1 моля вещества в п молях растворителя. Процесс растворения можно представить в виде химического уравнения  [c.36]

    При /а=145°С и Рх=1,35 МПа концентрация слабого раствора л а = 0,177, энтальпия 2 = 497 кДж/кг. [c.378]

    Энтальпийные коэффициенты к 2 получают из калориметрических измерений интегральных молярных энтальпий разведения, которые, как было показано выше, представляют собой избыточные молярные энтальпии раствора. Если раствор, содержащий 2 молей растворенного вещества, разбавляется чистым растворителем от начальной концентрации с 2,/ ДО конечной концентрации с 2,/. то изменение энтальпии в этом процессе представляет собой разность избыточных молярных энтальпий (отнесенных к одному молю растворенного вещества при с 2,/) раствора  [c.56]

    В таблице приведены удельные изобарные теплоемкости Ср при 20 С и изменение энтальпии ДЯ=Ят- — в результате нагрева раствора от О °С до заданной температуры (Яо и Я — энтальпии раствора данной концентрации при температурах О °С и Г°С соответственно). [c.828]

    Обычно теплоты разведения измеряют, разбивая ампулу с раствором концентрации в чистом растворителе или в растворе концентрации те2- Иногда используют теплоты растворения чистого электролита в растворе. В каждом случае процедура определения АН ,1[ из показаний прибора имеет свои особенности. Чтобы избежать неувязок между величинами, найденными разным путем, важно учитывать, что, согласно определению (5), теплота разведения (концентрирования) раствора неравна разности полных энтальпий растворов соответствующих концентраций. Действительно, согласно (3) — (5) [c.43]


    Это означает, что с ростом концентрации растворенного вещества в растворе начинает играть большую роль процесс, увеличивающий свободную энтальпию раствора, если она уменьшалась вначале (при малых концентрациях). [c.276]

    Поведение каждого компонента в растворе характеризуется парциальной энтальпией Я , равной приращению энтальпии раствора заданной концентрации при добавлении бесконечно малого количества какого-то -го компонента при постоянных Р и Г и постоянном числе молей остальных компонентов  [c.316]

    Если допустить существование в растворе I-I электролита такого рода ионных пар с концентрацией N , то свободная энтальпия раствора выразится формулой  [c.15]

    Важнейшей составной частью теории концентрированных растворов электролитов должна явиться физическая теория, учитывающая силы электростатического взаимодействия между ионами и между ионами и молекулами воды. Эта теория должна вывести формулу для нелинейного слагаемого свободной - энтальпии раствора, т. е. функции Фз формулы (5) в зависимости от концентрации раствора. Примером такой теории является теория Дебая — Гюккеля и ее модификации. [c.16]

    В 1954 г. Г. И. Микулин (7) показал, что для концентрированных растворов электростатическое слагаемое свободной энтальпии раствора должно зависеть от концентрации раствора не в соответствии с теорией Дебая — Гюккеля, а следующим простым образом  [c.46]

    Если решить совместно г уравнений (17) и (18) в численном виде относительно г величин N , то получим, в виде таблицы или диаграммы, значения этих величин в функции от Но, Н, и,-, K . Подставляя их в формулу (15), найдем значение свободной энтальпии раствора в зависимости от концентрации электролита, гидратных чисел ге,-и констант нестойкости K жидких гидратов ионов. Сопоставляя эти данные с экспериментальными значениями свободной энтальпии раствора, мы могли бы проверить правильность исходных данных, лежащих в основе вывода формулы (15). К сожалению, это неосуществимо из-за недостатка экспериментальных данных, так как все обычные методы, которыми пользуются для определения составов комплексов и констант нестойкости, неприменимы к жидким гидратам ионов. [c.52]

    Гидратная теория растворов электролитов [1] обобщена на смешанные растворы двух солей с общим ионом. Выведена формула для свободной энтальпии раствора и активности электролита и дан метод расчета концентрации жидких гидратов ионов и кривых растворимости солей в тройных растворах по опытным данным об активности электролита в водном растворе каждой из этих солей в отдельности. [c.125]

    При отсутствии переохлаждения раствора, т. е. при .tne=0 состояние раствора при выходе из абсорбера определится точкой 4А, лежащей на пересечении изотермы с линией кипения Ро- В этом случае достигнутая концентрация крепкого раствора будет наиболее высокой. Энтальпия крепкого раствора на входе в теплообменник (точка 4 ) несколько выше, чем в точке 4 за счет работы насоса для раствора. Практически этой разницей пренебрегают, принимая 4 =г 4- [c.27]

    Розенфельд Л., Карнаух М. Диаграмма концентрация-энтальпия раствора бромистый литий — вода для расчета абсорбционных холодильных машин. Холодильн. техника, 1958, № 1, 37—42. [c.98]

    С, полученные в качестве нулевого приближения, переходим к решению системы уравнений теплового и материального балансов. Поскольку энтальпия раствора зависит не только от температуры, но и от 7концентрации, решение частной системы получаем также методом последовательных приближений, используя ту же схему, что и при решении полной системы. Делим систему балансовых уравнений на две части систему уравнений материального баланса и систему уравнений теплового баланса, и принимаем произвольные значения для количеств образующегося пара с помощью которых определяем промежуточные концентрации определяем энтальпии растворов и решаем уравнения теплового баланса, получая в Первом приближении значения количеств образующегося пара если 5ТИ значения практически не совпадают с ттроизвольно принятыми, расчет повторяют снова. [c.233]

    Научная методика расчетов значений удельных энтальпий растворов для гетерогенных систем, находящихся под высоким давлением пара растворителя и при высоких температурах [46] (ортобарные условия), наиболее детально разработана Пучковым Л. В. [162]. Он изучил двойные систейы гидроксидов и солей лития, натрия, калия, а также тройные системы НааО—А12О3—НаО, КаО—А12О3— НаО (рис. 4.7) и их смеси при 25—350 °С. По этой методике могут быть рассчитаны тепловые эффекты процессов смешения, растворения, кристаллизации, выпарки по диаграммам энтальпия—концентрация—температура, в основу построения которых должны быть положены надежные данные по температурной зависимости теплоемкости растворов. [c.86]


    Важные сведения о природе процессов мицеллообразования дает зависимость ККМ от температуры. Напомним, что ККМ отвечает существованию термодинамического равновесия между мицеллами и молекулами, причем ККМ соответствует той концентрации истинного раствора, См = Ск при которой появляется определенное, экспериментально обнаруживаемое число мицелл в единице объема га иц. Если допустить, что эта фиксируемая концентрация мицелл Лмиц и степень ассоциации молекул в мицеллах т в области ККМ в некотором интервале температур остаются примерно постоянными, а коэффициент активности молекулярного раствора равен единице, то, в соответствии с законами термодинамики, для энтальпии мицеллообразования Зёмщ можно написать [c.227]

    На оси абсцисс / -диаграммы отложена массовая концентрация легкокипящего компонента в растворе, т. е. отношение массы легко-кнпящего компонента, обычно рабочего агента, к массе раствора на оси ординат — удельная энтальпия раствора 1. [c.112]

    После насоса крепкий раствор делится на два потока один (точка 8) направляется на рециркуляцию, второй (точка 7) — через теплообменник в генератор. Естественно, что состояние крепкого раствора в точках 6, 7 и 8 схемы определяются на г, -диаграмме одной и той же точкой, поскольку концентрация и энтальпия раствора в этих точк зх схемы одни и те же. [c.122]

    Котоентрироваг ие вымораживанием термолабильных жидких продуктов позволяет сохранить их качество. В этом процессе влага сгущаемого раствора замораживается и удаляется в виде кристаллов льда. Процесс многоступенчатого вымораживания можно представить на диаграмме 1-Х (рис.6). На оси X отложено количество растворителя, приходящегося на 1 кг растворенного вещества, 1 — энтальпия раствора. Точка I — исходное состояние раствора. Начальное охлаждение раствора происходит при постоянном X. Точка 2 — насыщенное состояние. При небольшом переохлаждении процесс дойдет до точки 3, где начинается образование кристаллов льда. Замораживание происходит при постоянной температуре до точки 4, в которой смесь состоит из (1 + Х4) кг раствора и (Х1-Х4) кг кристаллов льда. Лед удаляется из раствора, который охлаждается до точки 5. Вновь начинается образование кристаллов льда, замораживание происходит изотермически по линии 1 . Лед удаляется, раствор охлаждается до температуры Раствор достигает концентрации, соответствующей эвтектической точке [c.276]

    В чистой воде при 293 К около 12 % связей О — Н...0 разорвано. Вероятность того, что атом кислорода воды в разбавленном растворе образует с молекулой ДФЮ связи С — Н...0, составляет около 12 %. В остальном связи С — Н... 0 могут возникать при условии разрыва связей О— Н...0 между молекулами воды. Возрастание энтальпии раствора за счет разрыва связи О — Н...0 составляет 16.0,88—14 кДж/моль. Уменьшение энтальпии раствора при образовании связи С — Н...0 равно 6 кДж/моль. Пренебрегая небольшими изменениями энергии реактивного взаимодействия полярных молекул с окружением [2—10], находим, что с образованием связи С — Н...6 энтальпия раствора увеличивается на 8 кДж/моль. Так как АН АО , то прирост АН означает снижение устойчивости раствора. Поэтому около алкильного радикала и групп С2Н4 в полиоксиэтиленовой части молекул ДФЮ при концентрациях, меньших ККМ, должны возникать клатратные структуры воды с пустотами таких размеров, чтобы в них могли помещаться углеводородные группы. Минимуму д в данном случае должно соответствовать минимальное изменение числа Н-связей между молекулами воды. Расчеты с моделями н-декана (Д) и н-децилфенильной группы (ДФ) показывают, что радикал Д, вероятно, имеет свернутую конформацию (рис. 6). Д помещается в двух, имеющих общую грань, [c.157]

    Интегральные теплоты растворения зависят от концентрации. Поэтому при разведении или концентрировании раствора также наблюдается тепловой эффект, отвечающий изменению энтальпии раствора с изменением концентрации. Разность интегральных теплот растворения может быть величиной положительной, отрицате.льно1"1 или равной нулю  [c.43]

    На рис. 31 изображены зависимости от концентрации и температуры [5, 6] и 2 для наиболее подробно изученной нами системы КН4С1—НзО. Здесь еще более выпукло, чем в случае интегральных теплот растворения (см. стр. 116), виден закономерный переход при повышении температуры изотерм от II типа к I. В то время как при 18 и 25° С добавление воды к растворам N1140 всех концентраций вызывает возрастание энтальпии раствора ( 1 > 0) тем большее, чем выше концентрация электролита, при 50 и 75° С, напротив, при любой концентрации внесение моля воды в систему ведет к уменьшению ее энтальпии <0), также прогрессирующему с ростом [c.189]

    Продукты, образующиеся при сгорании серу- или галогенсодержащих соединений, часто оказываются весьма агрессивными по отношению к материалу бомбы и ее деталям. Поэтому для плакировки внутренней поверхности бомбы и изготовления ее деталей необходимо использовать относительно инертные материалы, такие, как платина или тантал. При сжигании хлор- или бромсодержащих соединений образуется смесь элементарного галогена и галогеноводородной кислоты. Для полного превращения в галогеноводородную кислоту перед сожжением в бомбу вводят некоторое количество восстановителя, нанример водного раствора мышьяковистого ангидрида или дихлоргидрата гидразина. Последние исследования Смита, Скотта и Мак-Каллоха [1387] показали, что платиновая плакировка катализирует распад дихлоргидрата гидразина, поэтому использование этого реагента в платинированных бомбах недопустимо. Для определения теплот сгорания хлорсодержащих соединений используют методику сжигания в стационарной бомбе, причем раствор восстановителя наносят на стеклоткань [635] или кварцевое волокно [1384] . Однако определяемые с помощью стационарных бомб энтальпии сгорания часто неточны из-за различной концентрации кислотного раствора в разных частях бомбы и отсутствия полного равновесия между образовавшимися газами и раствором. Стационарную калориметрическую бомбу применяют также для определения теплот сгорания серусодержащих соединений. Хаббард, Катц и Уаддингтон [633] предложили методику, исключаю- [c.87]

    Нельзя, однако, закрывать глаза на недостатки формулы (14) и вытекающих из нее формул (5) и (6). Представление о жидких гидратах как соединениях постоянного состава, не зависящего от концентрации раствора, не способных к диссоциации, находится в противоречии с гидратной теорией растворов Д. И. Менделеева и приближается к исходной концепции теории Робинсона и Стокса. Отказ от учета степени диссоциации жидких гидратов приводит к тому, что свойства растворов таких сильно гидратирующихся электролитов, как, например, ЫС1, СаС1з и др., не укладываются в формулу (14). Некоторые из найденных в [7] значений гидратных чисел, например п — или м = 3, необъяснимы с точки зрения координационных представлений. Из формулы (14) вытекает, что энтальпия раствора Н должна быть независима от числа п, не должна содержать логарифмического члена и должна выражаться формулой, аналогичной (4), что имеет место далеко не для всех электролитов. [c.50]

    Концентрации жидких гидратов не являются произвольными. Их можно определить на основе термодинамического принципа равновесия из условия минимума свободной энтальпии раствора нри заданных Р, Т, N и NQ. Соответствующий метод был впервые указан в книге Ван-дер-Ваальса и Констамма [19, стр. 286] и развит Де Донде [23]. Условие минимума свободной энтальпии дает для кяждого гидрата уравнение [c.51]

    Формулы для кажущихся и парциальных молярных объемов, теплоемкостей и т. д. не содержат логарифмических членов, как это и имеет место в действительности. Эти свойства растворов мало связаны с существованием и составом жидких гидратов ионов и находятся поэтому (в первом приближении) в линейной зависимости от У С. Нельзя, однако, делать вывод, что V, Н, Ср, А vi К вообще не зависят от состава и концентрации жидких гидратов. Действительно, как видно из формул (55) и (60), количество жидких гидратов входит в аддитивную часть этих формул, соответствующую слагаемому (44) формулы (40) для свободной энтальпии раствора. Если изменение объема раствора при образовании жидких гидратов сравнительно невелико, то сумма m AFx + т"не окажет существенного влияния на объем раствора и решающую роль будет иметь член, зависящий от электростатических сил и находящийся в линейной зависимости от V , т. е. мы придем к известной формуле Мэссона [22] для кажущегося молярного объема электролита в растворе. В отличие от объема раствора его энтальпия, в области умеренных концентраций, значительно сильнее связана с гидратацией, т. е. с суммой т АН°1 -Ь т"АН, которой уже нельзя пренебрегать, а потому кривые для кажущейся молярной энтальпии не укладываются в закон У С. При дифференцировании энтальпии по температуре мы получаем величины Н1) и кото- [c.70]


Смотреть страницы где упоминается термин Концентрация и энтальпия раствора: [c.54]    [c.233]    [c.644]    [c.307]    [c.108]    [c.349]    [c.215]    [c.241]    [c.188]    [c.299]    [c.157]    [c.179]    [c.186]    [c.19]    [c.644]    [c.485]    [c.8]    [c.30]   
Смотреть главы в:

Холодильные машины и аппараты -> Концентрация и энтальпия раствора




ПОИСК





Смотрите так же термины и статьи:

Концентрация растворов



© 2025 chem21.info Реклама на сайте