Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодической системы никель, палладий, платина

    Наиболее активными катализаторами для гидрирования являются мелкодиспергированные металлы VIH группы Периодической системы (никель, кобальт, платина, палладий), а также медь. Во многих случаях используют катализаторы, нанесенные на носители (активированный уголь, асбест, сернокислый барий). Применение катализаторов на носителях повышает их устойчивость и сопротивляемость каталитическим ядам. [c.258]


    X группа периодической системы никель №, палладий Рё, платина [c.595]

    В восьмую группу периодической системы входят типические элементы (гелий, неон, аргон), элементы подгруппы криптона (криптон, ксенон, радон), элементы подгруппы железа (железо, рутений, осмий), элементы подгруппы кобальта (кобальт, родий, иридий) и элементы подгруппы никеля (никель, палладий, платина). [c.609]

    К восьмой группе элементов периодической системы относятся три триады железа, рутения и осмия. Номер группы обычно отвечает максимальной валентности элементов по кислороду. На этом базировались попытки К. Горалевича (1929—1932 гг.) получить восьмивалентные соединения железа, никеля и кобальта. Как известно, эти попытки окончились неудачно. Позже Б. Ф. Ормонт, исходя из современных представлений о нормальной и возбужденной валентности, показал, что для этих элементов невозможно достичь валентности, равной восьми. Из девяти элементов этой группы только два элемента рутений и осмий проявляют эту высокую валентность. Поэтому в ряде вариантов периодической системы в последнее время номер 8В над этой группой не ставят. Все рассматриваемые элементы относятся к а -типу, но электронные структуры оболочек атомов железа, кобальта и никеля различны. Если с точки зрения строения атома аналогия -элементов в каждой подгруппе определяется суммарным числом внешних 5- и -электронов слоя, соседнего с внешним, то истинными аналогами следует считать подгруппы элементов, расположенные по вертикали. Таким образом, в 8В-гру-ппе элементов три подгруппы железо-рутений—осмий кобальт—родий—иридий и никель—палладий—платина. Свойства этих элементов и их соединений и будут нами рассматриваться по данным подгруппам. [c.345]

    Наибольшей удельной каталитической активностью в отношении реакции взаимодействия водорода и кислорода обладают металлы VHI группы периодической системы Д. И. Менделеева — никель, палладий, платина, обеспечивающие устойчивое протекание процесса при низкой температуре входящего газа (30—40° С) при времени контакта менее [c.76]

    X группа периодической системы никель Ni, палладий Pd, платина Pt 1. PdF  [c.402]

    Побочная подгруппа восьмой группы периодической системы охватывает три триады /-элементов. Первую триаду образуют элементы железо, кобальт и никель, вторую триаду — рутений, родий и палладий и третью триаду — осмий, иридий и платина. [c.670]

    Промышленные катализаторы гидрирования представляют собой высокодисперсные металлы, обычно нанесенные на пористые носители. Высокой гидрирующей активностью отличаются металлы УП1 и I групп периодической системы элементов (никель, кобальт, платина, палладий, родий, медь и др.). В качестве носителей этих металлов наиболее часто используются окиси алюминия, кремния, цинка, хрома, активный уголь, диатомиты. Находят применение в промышленности и сплавные катализаторы [46, 55]. Готовят катализаторы пропиткой носителя растворами легкоразлагающихся соединений активного металла или же методом их совместного осаждения с носителем [56]. Как правило, перед использованием в процессе катализаторы предварительно восстанавливают. [c.411]


    В качестве катализаторов применяются почти исключительно элементы, принадлежащие к УП1 группе периодической системы элементы группы железа и платины. В лабораторной практике в качестве катализаторов наибольшее значение имеют никель, платина и палладий. В последнее время начинают применяться сложные катализаторы, состоящие из смеси окислов хрома и некоторых других металлов (меди, цинка). [c.522]

    Сравнительные исследования активности контактных веществ, проведенные Реми, показывают, что предопределение активности катализатора будет возможно после выяснения сродства металлов по отношению к кислороду и водороду. Реми считает, что у металлов восьмой группы периодической системы растворимость водорода возрастает в следующем порядке рутений, осмий, платина, родий, кобальт, железо, никель, иридий и палладий, а химическое сродство по отношению к кислороду возрастает в следующем порядке платина, палладий, иридий, осмий, рутений, родий, никель, кобальт и железо. Он предполагает, что если металл стоит в первом ряду на месте, которое предшествует его положению во втором ряду, то после предварительной обработки водородом он приобретает более высокую активность, чем после обработки кислородом, и наоборот. Если металл находится во втором ряду в положении, предшествующем положению в первом ряду, то после предварительной обработки кислородом он становится более активен, чем после обработки водородом. Металлы, окиси которых отличаются высокими теплотами образования, обладают сравнительно малой каталитической активностью. [c.253]

    Железо находится в IV периоде в восьмой группе периодической системы. Эта группа отличается от всех остальных тем, что объединяет элементы только больших периодов и состоит из трех триад. Первую триаду (семейство) образуют элементы железо, кобальт и никель, вторую триаду — рутений, родий и палладий и третью — осмий, иридий и платина. Атомы элементов триад железа имеют в наружном слое по 2 электрона, остальные валентные электроны находятся в предпоследнем слое. [c.174]

    В процессе гидрогенизационного облагораживания чаще всего применяют серостойкие катализаторы, состоящие из активных гидрирующих компонентов, нанесенных на пористый окисный носитель. В качестве активных компонентов используют металлы, окислы или сульфиды У1 (молибден, хром, вольфрам) и УП (кобальт, железо, никель) групп Периодической системы элементов и их смеси [22,23]. Активным компонентом может, кроме того, служить благородный металл -платина или палладий [24,2о]. В качестве носителя используют окислы алюминия, магния, кремния, циркония или их смеси [22, возможно также использование окиси титана, в чистом виде или в смеси с другими окислами 24,25]. Рекомендуется нанесение на носитель 2- Уо кобальта или никеля и 5-20% молибдена, 2-10% никеля и 10-30% вольфрама [24], [c.12]

    Комплексы платины и ближайших ее соседей по периодической системе (никеля, родия, палладия и иридия) обладают плоской или октаэдрической конфигурацией и в отличие от других тетра- или гексакоординационных комплексообразователей характеризуются более высокой устойчивостью. Поэтому на их примере удается проследить влияние состава и строения комплекса на его химические и физико-химические свойства. Особенно это относится к производным платины. [c.103]

    Поэтому Бруер предсказывает, что для заданного металла с левой части периодической системы, например циркония, стабильность интерметаллического соединения должна достигать максимума в случае применения металлов группы У1П (никеля, палладия, платины). Аналогично, для платины в комбинации с металлами, например, молибденом, ниобием, цирконием, предсказывается, что стабильность пройдет через максимум для группы 1УБ (титана, циркония, гафния). [c.137]

    Специальная очистка водорода от кислорода зиждется обычно на каталитическом гидрировании последнего водородом. В качестве веществ, ускоряющих реакцию взаимодействия кислорода с водородом, могут применяться металлические и окисные катализаторы (окислы никеля, меди, марганца и др.). Однако окисные катализаторы по своей активности значительно уступают металлическим. Сильнее других катализируют реакцию взаимодействия водорода с кислородом металлы YIII группы периодической системы Менделеева никель, палладий, платина. На этих катализаторах реакция гидрирования кислорода водородом идет с заметной скоростью уже при 25° С. [c.409]

    Восстановление катионов в цеолитах изучали главным образом для металлов VIII, 1Б и ПБ групп Периодической системы никеля [1-19], платины [20-34], палладия [34-37], меди и серебра [38-43 . Преимущественно исследовали восстановление металлов в цеолитах типа фожазита. При этом были использованы самые разнообразные методы-ЭПР [20, 34, 35, 43], ЯМР [24, 25], измерение магнитной восприимчивости [3-5, 8, 11-13, 19], рентгеновские методы [26, 33, 38, 41, 43], электронная спектроскопия [14, 18, 42], электронная микроскопия [27, 32, 33, 40, 41]. [c.114]

    Из металлов наиболее характерными каталитическими свой-стнами обладают элементы VUl группы периодической системы элементов Д. И. Менделеева. Для ряда процессов катализаторами являются железо (синтез аммиака) кобальт, никель, иридий, платина, палладий (гидрирование и для последних — окисление двуокиси серы). Кроме того, металлы VUl группы являются катализаторами и других процессов разложени.я перекиси водорода, получения гремучего газа, окислеиия аммиака, метанола, метана, окиси углерода, дегидрирования спиртов и т. д. Каталитической активностью обладают и соседние (в периодической системе) элементы медь, серебро, отчасти золото, возможно цинк и кадмий. [c.363]


    В первый период развития гидрогенизационных процессов в качестве катализаторов применялись специальным образом приготовленные металлы VIII группы периодической системы элементов никель, кобальт, железо, платина, палладий или их окислы [1—7]. Катализаторы этого типа характеризуются весьма высокой гидрирующей способностью и могут использоваться на носителях и без них. В литературе подробно освещены способы приготовления и применения никеля Ренея [8,9], платиновой и палладиевой черни, окиси платины [10], никеля на кизельгуре или на окиси алюминия [II], платины и палладия на активированном угле [12, 13]. [c.64]

    Дегидрирующую (гидрирующую) функцию в катализаторе обычно выполняют металлы УП1 группы Периодической системы элементов Д. И. Менделеева (платина, палладий, никель). Наибольшими дегидрирующими свойствами обладает платиновый компонент. Его функцией является ускорение реакций дегидрирования и гидрирования, что способствует образованию ароматических углеводородов, непрерывному гидрированию и частичному удалению промежуточных продуктов реакций, ведущих к коксооб-разованию. Содержание платины в катализаторе обычно составляет 0,3—0,6%. При меньшем содержании платины уменьшается устойчивость катализатора против ядов, при большем обнаруживается тенденция к усилению реакций деметилирования, а также реакций, ведущих к раскрытию кольца нафтеновых углеводородов. Другим фактором, лимитирующим содержание платины в катализаторе, является его дороговизна. [c.139]

    Большинство каталитически активных металлов, как указывалось выще, представляет собой элементы VI и VIII групп Периодической системы элементов Д. И. Менделеева (хром, молибден, вольфрам, железо, кобальт, никель, платина и палладий). В некоторых случаях сульфиды и окислы этих металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации, гидрокрекин" га и насыщения кратных связей. Так как серосодержащие соединения присутствуют практически в любом сырье, следует применять серостойкие катализаторы — сульфиды металлов. В большин-, стве современных процессов в качестве катализаторов используют кобальт или никель, смешанные в различных соотношениях с молибденом, на пористом носителе (окиси алюминия). Иногда применяют сульфидный никельвольфрамовый катализатор. [c.215]

    Диметилглиоксим образует нерастворимые осадки, кроме + +, только с некоторыми другими катионами элементов VIII группы периодической системы, а именно с палладием и частично с платиной. Эти катионы редко встречаются при обычном ходе анализа, и поэтому для количественного отделения никеля и его определения применяется почти исключительно метод осаждения диметилглиоксимом. [c.179]

    Побочная подгруппа восьмой группы периодической системы охватывает три триады -элементов и два искусственно полученных и мало исследованных элемента. Первую триаду образуют элементы железо, кобальт и никель, вторую триаду — рутений, родий и палладий и третью триаду — осмий, иридий и платина. Искусственно полученные элементы ханий и мейтнерий с малым временем жизни замыкают известный на сегодня ряд самых тяжелых элементов. [c.522]

    Восьмую группу периодической системы составляют переходные металлы железо, кобальт, никель, рутений, родий, палладий, осмий, иридий и платина, которые расположены в трех триадах. Триады VIII группы образуют элементы наиболее сходные между собой. [c.344]

    В У1ИБ группу Периодической системы входят три триады элементов в 4-м периоде — железо Ре, кобальт Со и никель N1 (семейство железа), в 5-м периоде — рутений Ки, родий РЬ и палладий Р<1 (легкие металлы семейства платины) и в 6-м периоде—осмий Оз, иридий 1г и платина Р1 (тяжелые металлы семейства платины). Таким образом, в этой группе прослеживается изменение химических свойств как внутри периода (вдоль триад), так и внутри вертикальных последовательностей (Ре—Ки—Оз, Со—КН—1г, N1—Рс1—Р1). Для рассмотрения общей характеристики элементов УП1Б группы наиболее удачным пре.дставляется деление на семейства железа (3 элемента) и платины (6 элементов). [c.243]

    В побочной подгруппе VIII группы периодической системы элементов Д. И. Менделеева находится 9 элементов железо, кобальт, никель, рутений, родий, палладий, осмий, иридий, платина. Сходные между собой элементы этой группы образуют горизонтальные группировки, так называемые триады. Элементы железо, кобальт и никель образуют триаду железа, или семейство железа. Остальные элементы VIII группы составляют семейство платиновых металлов, которое включает триады палла- [c.207]

    К -металлам УП1 группы периодической системы Д. И. Менделеева относятся железо Ре, рутений Ни, осмий Ов, кобальт Со, родий НЬ, иридий 1г, никель N1, палладий Рс1 и платина Р1 Эти девять металлов образуют три триады в соответствии с периодами, в которых они расположены. Свойства их закономерно изменяются в соответствии с заполнением электронами подуровня й по горизонтали, позволяя проследить связь -металлов VIII группы с их соседями (VII и I группы), а также закономерно изменяются по вертикали в пределах электронных аналогий. [c.361]

    Активность катализаторов, применяемых в реакциях гидрирования нитросоединений, зависит от их химического состава и физического состояния. Чаще всего применяются металлические катализаторы, особенно металлы VIII группы периодической системы — платина, палладий, родий, никель, кобальт, а также сплавы никеля и хрома, никеля и меди и другие. Доказано, что активность катализатора увеличивает находящиеся в них примеси некоторых веществ — загрязнения или же специальные добавки — так называемые активаторы. Большое значение имеет также степень измельчения катализатора. Максимальное раздробление достигается осаждением каталитически активного вещества на так называемый носитель. [c.120]

    В основополагающих работах Ринеккера с сотрудниками были особенно подробно изучены сплавы никеля, палладия и платины с металлами I побочной группы периодической системы элементов (Си, Ag, Ли), у которых -зона заполнена целиком. На рис. 53 показаны данные такого модельного исследования системы Си —Ni. Пока незаполненные квантовые состояния в обоих металлах образуют общую -зону сплава, последний по каталитическим свойствам аналогичен матрице металлического никеля. Напротив, при полном заполнении зоны исчезает необходимая для активации молекул водорода действующая доля -вакансий, и каталитические свойства сплава изменяются скачкообразно. [c.113]

    На смешанных платино-палладиевых, палладий-рутениевых, серебряно-палладиевых, нанесенных на AlgOg, катализаторах при высокой производительности (30 000—70 000 ч ) температура очистки от СО несколько ниже по сравнению с нанесенным палладиевым катализатором. Добавка к палладию золота (сплавы) существенно понижает [172, 173], а добавка родия повышает активность контакта [174]. Окисление СО на других металлах VHI группы периодической системы практически не изучено. Установлено только, что на металлическом иридии реакция осуществляется по механизму Ридила при взаимодействии адсорбированного кислорода с СО газовой фазы [175], а на металлическом никеле в высоком вакууме (10 —10" торр) окисление СО идет при комнатной температуре [176]. [c.235]

    В качестве гидрирующих компонентов используют металлы платиновой группы (платина, палладий, осмий) окскдн и сульфиды элементов Л. группы периодической системы (молибден, вольфрам, хром), а также композиции металлов У1 группы с металлами Ш группы (никелем, кобальтом, железом). Сложные катализаторы обладают большей активностью, чем отдельные их составляющие, благодаря взаимному про-мотированию. [c.34]

    В качестве гидрирующего комлонента катализаторов используют металлы У1В и УШ групп периодической системы элементов. Чаще всего используется никель [31-84,109,110,112], платина и палладий [31,109,110,112], реже - окислы и сульфиды молибдена [Я1,109, Ш], кобальта [87,109, НО] и вольфрама [31, ш]. Гидрирующие компоненты вводят ионным обменом [81-84,112], пропиткой [П1,112] или сочетанием этих способов [но]. Предлагается также метод введения гидрирующего ко понента в момент синтеза эрионита (ТО ]. [c.38]

    В табл. 10-9 и 10-10 показано, что металлы, образующие только чистые карбонилы, и металлы, образующие только гадо-генкарбонилы (не содержащие иных лигандов), расположены в разных областях периодической системы. Так, было показано что палладий, платина, металлы группы меди и, возможно, ртуть [264] в отличие от металлов группы хрома и никеля дают галогенкарбонилы. Степень окисления металла в этих соединениях обычно [c.583]


Смотреть страницы где упоминается термин Периодической системы никель, палладий, платина: [c.534]    [c.310]    [c.309]    [c.279]    [c.12]    [c.128]    [c.194]   
Смотреть главы в:

Структуры неорганических веществ -> Периодической системы никель, палладий, платина




ПОИСК





Смотрите так же термины и статьи:

Никель(П) и платина(П)

Палладий

Палладий палладий

Периодическая система



© 2025 chem21.info Реклама на сайте