Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы реакций гидрирования кислорода

    Каталитическая активность катализаторов в реакции гидрирования кислорода измеряется величиной коэффициента превращения кислорода по формуле [c.71]

    В микрогетерогенном катализе применяются, как правило, золи благородных металлов - палладия и платины, реже - золота, серебра и меди. Золи палладия и платины являются хорошими, катализаторами реакций гидрирования и окисления. Катализато- ром окисления молекулярным кислородом также служит колло-.ь идный осмий. ч< [c.378]


    Результаты проведенных исследований показали, что платиновые и палладиевые катализаторы обеспечивают протекание реакции гидрирования кислорода в области внешней диффузии. Таким образом, процесс может быть проведен при сравнительно низких температурах поступающего газа (вплоть до 20—30° С) и больших объемных скоростях (до 30 000 ч ). Активность палладиевых и платиновых катализаторов сохраняется длительное время и одинакова при стехиометрическом соотношении водорода и кислорода и при небольшом избытке водорода (примерно 0,1%)- При наличии избытка кислорода платиновые катализаторы более устойчивы, чем палладиевые, однако общее содержание кислорода в сыром аргоне (в обоих случаях) не должно превышать 2—2,5%. [c.116]

    Реакция гидрирования кислорода с образованием воды может осуществляться методом пламенного сжигания водорода или методом беспламенного сжигания на катализаторах. При этом парциальное давление, например кислорода, может быть определено из следующего соотношения  [c.112]

    В реакторе происходит реакция гидрирования кислорода, находящегося в сыром аргоне. Водород подается в реактор через пламягаситель 6. Электроподогреватель включают в работу только в период пуска установки для нагрева катализатора до 100 °С и для предпусковой регенерации адсорбента в блоке осушки. В нормальном режиме работы АрТ-0,5 электроподогреватель отключен. [c.142]

    Гидрозоли неблагородных металлов очень чувствительны к реактивам — кислотам и окислителям. Кроме того, их. трудно изготовлять. В связи с этим в коллоидальном катализе применяются, как правило, золи благородных металлов палладия и платины, реже—золота, серебра и меди. Золи палладия и платины являются хорошими катализаторами реакций гидрирования. Лучшим катализатором окисления кислородом служит коллоидный осмий. Специфика механизма микрогетерогенного катализа неясна и требует дальнейшего изучения. [c.243]

    Мазуты содержащие 15,8—4,0% асфальтенов, 1,86— 2,04% серы и 0,27—0,84% азота и кислорода, гидрировали на плавающем и стационарном катализаторах. Показаны преимущества замены плавающих катализаторов стационарными, а также возникающие при этом трудности, связанные с отравлением катализатора Изучалось влияние условий процесса на скорости реакций гидрирования и расщепления. Достаточно глубокое гидрирование ароматизированного сырья происходит при давлениях 200 кгс/см и выше, скорость зависит от химического состава сырья и может изменяться в широких пределах. Гидрирование полициклических соединений протекает последовательно, наиболее медленной ступенью является гидрирование моноциклических ароматических углеводородов [c.50]


    Скорость процесса гидрирования кислорода на никелевых катализаторах при большом избытке водорода можно приближенно выразить ураннением реакции первого порядка [c.202]

    При деструктивной гидрогенизации твердых и жидких топлив преимущественно протекают реакции гидрирования, крекинга и в меньшей степени - реакции изомеризации, циклизации, полимеризации и конденсации. Органическая масса твердых топлив состоит в основном из ароматических конденсированных систем с разной степенью насыщенности водородом. Кислород, азот и сера тоже могут входить в эти соединения (связи С—О, С—N. С—8), поэтому у используемых катализаторов должны преобладать функции гидрирования соединений, содержащих 8, N и О, а также олефинов, образующихся при крекинге исходного сырья. [c.131]

    Давление. В процессах гидрогенизации вне зависимости от характера перерабатываемого сырья значительную роль играет парциальное давление водорода, которое с учетом давления паров и газов, полученных в процессе гидрогенизации, на 5-8 МПа ниже общего давления в системе. Повышение давления водорода сдвигает обратимые реакции гидрирования, несмотря на то что они протекают при относительно высоких температурах (440-480 С), в сторону образования соединений, наиболее насыщенных водородом. Это обстоятельство используют на практике с целью обогащения водородом исходного сырья, для гидрирования высокомолекулярных соединений, а также веществ, содержащих серу, кислород и азот. При повышенном давлении водорода уменьшается образование продуктов уплотнения. В конечном итоге давление водорода в системе, влияющее на глубину превращения исходного сырья, нужно определять с учетом химического состава исходного сырья, активности катализатора, продолжительности его работы и стои.мости, а также принимая во внимание характер получаемых продуктов. [c.131]

    Планирование эксперимента выполнялось симплексным методом в пятифакторном пространстве [3]. В качестве критерия оптимизации была выбрана каталитическая акт ивность образцов никель-медного катализатора марки НКО-2 с различными параметрами приготовления, оцениваемая по степени превращения кислорода в реакции гидрирования при температуре 80"С. Для определения активности образцов катализатора использовали проточную лабораторную установку с четьтрехканальным реактором. [c.107]

    С промышленной точки зрения метан является более перспективным исходным материалом для синтеза цианистого водорода, чем ацетилен. Реакции (1) и (2) весьма эндотермичны, и в случае применения обычного трубчатого реактора интенсивный подвод большого количества тепла для поддержания температуры 1500° представляет в промышленных условиях очень значительные трудности. Выше упоминалось о проведении реакции в электрической дуге как об одном из решений этой проблемы. Вторым решением является сожжение части реагирующих газов внутри реактора. Последний способ был применен при осуществлении реакции (2) и используется сейчас при промышленном производстве цианистого водорода из нефтяного сырья. Этот метод разработан в начале тридцатых годов Андрус-совым [6], который пропускал при 1000° над платиновым катализатором смесь аммиака, кислорода и метана, полученного гидрированием угля или из коксовых газов. В смеси должно находиться достаточное количество кислорода, чтобы могла протекать реакция [c.376]

    К реакциям первого типа относятся реакции гидрирования олефинов и ароматических колец, восстановление органической серы, соединений кислорода и азота в соответствующие углеводороды, НгЗ, Н2О и ННз. Реакции проводятся при температурах от 200° С и выше. Реакции второго типа, как, например, изомеризация и расщепление, требуют более высоких температур порядка 400° С. Активность катализатора повышается в присутствии серы и уменьшается при наличии соединений азота и кислорода, кроме того, эти элементы влияют на температуру, при которой происходит реакция. [c.268]

    Так, например, в реакциях гидрирования — дегидрирования углеводородов на платиновых катализаторах, по данным исследования, отношения интенсивностей оже-пиков О (515 эВ) и Pt (237 эВ) обнаружен неожиданный промотирующий эффект хемосорбирован-ного кислорода, тогда как окисление Pt приводило к дезактивации катализатора. [c.163]

    Широкое применение платиновые металлы находят в качестве катализаторов. Так, способность платины сорбировать кислород позволяет использовать ее в качестве катализатора процессов окисления (контактный способ производства серной кислоты, каталитическое окисление аммиака и т. п.). Сродство палладия к водороду обеспечивает его каталитическую активность при разнообразных реакциях гидрирования. Значительные количества платины и палладия используются для изготовления ювелирных изделий. Платиновые металлы наряду с золотом и серебром служат в качестве валютных активов. [c.427]


    Соответствующим выбором катализатора удается достигнуть хорошей управляемости процессов гидрирования. Часто реакцию можно проводить с весьма высокой избирательностью для получения одного или нескольких целевых продуктов. Одним из наиболее интересных свойств гидрирующих катализаторов является их избирательность. Нанример, металлический никель обычно значительно более активен в реакциях насыщения двойной связи углерод — углерод, чем в реакциях гидрирования связи углерод — кислород, в то время как хромит меди обнаруживает обратную избирательность. В этой области практический опыт во многих случаях значительно обгоняет понимание теоретических основ. [c.140]

    Суммарный температурный коэффициент скорости реакции гидрирования положительный. С повышением температуры жесткость гидроочистки возрастает пропорционально, приводя к снижению содержания серы, азота, кислорода и металлов в очищенном потоке. Расход водорода увеличивается, иногда достигает максимума, а затем может снижаться вследствие протекания реакций дегидрирования. Однако нри повышении температуры до области, в которой возможно протекание нерегулируемых реакций гидрокрекинга, расход водорода возрастает до чрезвычайно больших величин. Образование кокса на катализаторе обнаруживает отчетливую зависимость от температуры процесса. Поэтому температуру необходимо всегда поддерживать возможно низкой, насколько это совместимо с требуемым качеством продукта, чтобы свести до минимума скорость загрязнения катализатора. Если стремятся предотвратить интенсивное протекание гидрокрекинга, то температуру процесса поддерживают в пределах 260—415° С. В области температур 400—455° С реакции гидрокрекинга становятся преобладающими. [c.151]

    При постепенном увеличении и уменьшении Рсо должен существовать гистерезис зависимости скорости реакции от Рсо- Полученные результаты подтверждены экспериментально (рис. 1.6). Измерения скорости реакции гидрирования СО в проточно-циркуляционной установке под давлением 30 атм показали, что при концентрации СО менее 0,02 моль/мЗ скорость реакции пропорциональна со- При более высоких концентрациях скорость резко уменьшается, переходя в нулевой порядок. Аналогичная зависимость скорости реакции от концентрации наблюдалась при гидрировании малых количеств кислорода на никелевых катализаторах [31]. [c.17]

    Получение платиновой черни [7]. 80 мл раствора HjPt l,., содержащего 20 г платины и небольшой избыток H I, смешивают с 150 мл 33% формалина, охлаждают до —10° и по каплям при размешивании вводят 420 г 50% КОН при температуре не выше 6°. Выпавшую платиновую чернь после получасового нагревания с размешиванием при 55—60° промывают декантацией водой до исчезновения реакции на С1-ионы, переносят на фильтр, заботясь о том,.чтобы осадок был покрыт водой, затем отсасывают, быстро отжимают между листами фильтровальной бумаги и сохраняют в вакуум-эксикаторе. Препарат следует хранить в атмосфере углекислого газа. Перед гидрированием необходима активация катализатора воздухом или кислородом. [c.341]

    Возможно, что если не принимать специальные меры, этот адсорбированный кислород в ходе реакции гидрирования прореагирует с водородом, образуя воду, которая будет дезактивировать катализатор. [c.40]

    Высокой активностью к реакции гидрирования окислов углерода и кислорода обладают катализаторы на основе металлов платиновой группы [4, 77]. Эти катализаторы в отличие от никелевых не пиро-форны, их не нужно восстанавливать после соприкосновения с воздухом. Как правило, это катализаторы на носителе, их приготовляют с помощью пропитки пористого носителя раствором соли активного [c.401]

    Сравнение свойств катализаторов, окисленных в различных условиях, показывает, что при гидрировании на платине не происходит полного удаления кислорода с поверхности. Его действие, намного превосходящее структурные эффекты, является одним из основных среди контролируемых факторов при формировании активности поверхности платины в реакциях гидрирования изученного типа. [c.164]

    Опыты с окислением платиновых катализаторов гидрирования показывают, что под действием кислорода их активность изменяется более сильно, чем при переходе от кристаллических к дефектным поверхностям платины. Кислород не удаляется полностью в условиях протекания реакций гидрирования на платине и существенным образом изменяет свойства центров катализа. [c.168]

    Специальная очистка водорода от кислорода зиждется обычно на каталитическом гидрировании последнего водородом. В качестве веществ, ускоряющих реакцию взаимодействия кислорода с водородом, могут применяться металлические и окисные катализаторы (окислы никеля, меди, марганца и др.). Однако окисные катализаторы по своей активности значительно уступают металлическим. Сильнее других катализируют реакцию взаимодействия водорода с кислородом металлы YIII группы периодической системы Менделеева никель, палладий, платина. На этих катализаторах реакция гидрирования кислорода водородом идет с заметной скоростью уже при 25° С. [c.409]

    Применительно к процессам каталитического гидрооблагораживання остатков знание общих закономерностей превращения отдельных гетероатомных соединений может быть полезно только в части того, что, например, сера из любого серусодержащего соединения удаляется в виде сероводорода, азот из азотсодержащих соединений удаляется в виде аммиака, кислород из кислородсодержащих компонентов в виде воды и пр. Скорость тех или иных реакций превращения гетероатомных соединений может быть оценена лишь косвенно на основе изучения элементного состава сырья и продуктов, а также замером количества вьщелив-шегося сероводорода, аммиака, воды, высадившихся металлов на поверхность катализатора. Интенсивность реакций гидрирования может быть оценена также косвенно по изменению содержания водорода и углерода в жидких продуктах реакции. В связи с этим, для выявления эффективности процессов каталитического гидрооблагораживання нефтяных остатков может быть применен принцип оценки брутто-реакций . Однако, ввиду многообразия остатков, выделенных из различных типов нефтей, характеризующихся различным содержанием компонентов с надмолекулярной структурой (асфальтенов, смол), знание только данных по элементному составу недостаточны. Механизм превращения нефтяных остатков тесно связан со структурными изменениями сырья при нагреве и контакте с каталитической поверхностью. [c.47]

    При исследовании влияния содержания натрия и фтора на активность алюмоплатинового катализатора в реакциях гидрирования бензола и изомеризации к-пентана было показано [110], что фтор и натрий снижают гидрирующую активность алюмоплатинового катализатора в отличие от антибатного действия этих элементов в реакции изомеризации. Добавка фтора к алюмоилатиновому катализатору уменьшает хемосорбцию кислорода на платине. [c.57]

    Энергия активации составляет около 42 кДд, моль. Следует отметить, что на активность и другие свойства катализатора оказывает большое аггаяние состав реакционной смеси, позтоцу скорость реакции будет зависеть от состава очищаемого газа. Так же как и при гидрировании окиолов углерода в прошпшенных аппаратах, процесс гидрирования кислорода протекает во внешней диффузионной области. [c.202]

    Скорость реакции между бутижмюм и водородом при комнатной температуре сравнительно невелика. Другая реакция — соединение кислорода и водорода протекает при комнатной температуре быстро однако катализатор прн этой реакции отравляется. Это наблюдение, возможно, имеет некоторую связь с приведенными ниже данными, согласно которым некоторые катализаторы гидрирования весьма чувствительны к соединениям, содержащим кислород. [c.268]

    Прежде всего изменение активности может происходить при варьировании условий проведения процесса. Так, с изменением состава реакционной смеси существенно меняется содержание кислорода в приповерхностном слое окисиого железосурьмяного катализатора при окислительном дегидрировании бутиленов. Обнаружено изменение каталитических свойств металлических катализаторов в результате поглощения водорода в реакциях гидрирования. Напомним, что изменение активности катализатора в зависимости от условий проведения реакции хорошо предсказывается уравнением (И). [c.105]

    Схема 2. В процессе реакции потенциал смещается в анодную-сторону на величину, при которой водород на поверхности практически отсутствует. При этом наблюдается нулевой порядок реакции по непредельному соединению и первый —по водороду. Эта схема реализуется для веществ, легко и полно снимающих водород, с поверхности катализаторов (хинон, нитробензол, винилацетилен и др.). Энергия активации таких реакций характерна для процесса атомизации водорода, почти одинакова при гидрировании любых соединений и достигает 50—59 кДж/моль. Первым актом реакции может являться передача электрона от поверхности катализатора непредельному соединению с образованием отрицательно заряженного ион-радикала (гидрирование кислорода, хпнона, нитробензола, ацетилена на палладии). Скорость их гидрирования не зависит от pH раствора. [c.196]

    В предыдущих главах были рассмотрены каталитические свойства катионных форм цеолитов в реакциях гидрирования, дегидрирования, окисления и окислительного дегидрирования углеводородов, т.е. в реакциях, относящихся к окислительно-восстановительному типу. Исследования, проведенные в лабораториях разных стран в последние 15—20 лет, показали, что не только цеолиты, но и киспотночюновные катализаторы других типов, например соединения щелочных, щелочноземельных и редкоземельных элементов, также проводят различные реакции гидрирования и дегидрирования, окисления и окислительного дегидрирования, т.е. реакции с участием водорода и кислорода. [c.117]

    Подобно цеолитам, содержащим катионы непереходных элементов, соединения щелочных, щелочноземельных и редкоземельных металлов, г.е. катализаторы киспотноюсновного типа, также проявляют активность не только в реакциях гидрирования—дегидрирования, но и в реакциях с участием кислорода в окислении и окислительном дегидрировании углеводородов. В этой связи следует отметить, что в случае катализаторов, содержащих соединения переходных металлов, их ки-слотноюсновные свойства также оказывают существенное влияние на поведение катализаторов в окислительных реакциях [357]. Такой взгляд на роль кислотно-основных свойств катализаторов в этих процессах последовательно развивался в работах Ли [358-364]. Было показано, что активность и селективность катализатора в окислительных реакциях зависят от соотношения кислотно-основных свойств исходных веществ, продуктов реакции и поверхности катализатора. Эти вопросы подробно обсуждаются в обзоре [365]. [c.126]

    Следует отметить, что при предварительном гидрировании протекают в основном реакции гидрирования, а реакции крекинга имеют второстепенное значение. Благодаря этому выход бензина небольшой (10—20%)—доля его в гидрюре составляет 30—40% при содержании в исходном сырье 20%. Легкие фракции получаются в основном в результате превращения кислород- и азотсодержащих соединений в углеводороды и (небольшое количество) за счет реакций крекинга. Для предварительного гидрирования на этой стадии применяют гидрирующий катализатор с малой расщепляющей способностью, но стабильный к кислород- и азотсодержащим соединениям. [c.211]


Смотреть страницы где упоминается термин Катализаторы реакций гидрирования кислорода: [c.910]    [c.79]    [c.39]    [c.48]    [c.121]    [c.236]    [c.278]    [c.285]    [c.221]    [c.140]    [c.8]    [c.41]    [c.331]    [c.173]    [c.48]   
Разделение воздуха методом глубокого охлаждения Том 2 (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции гидрирования



© 2025 chem21.info Реклама на сайте