Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытия из тантала

    Электрохимическая природа процесса окисления при повышенных температурах дает основание предполагать, что контакт различных металлов влияет на скорость процесса. Такое явление описано [29]. Например, реакция серебра с газообразным иодом при 174 °С ускоряется при контакте серебра с танталом, платиной или графитом. Скорость образования на серебре пленки Agi (который обладает в основном ионной проводимостью) определяется скоростью перемещения электронов сквозь эту пленку. При контакте серебра с танталом ионы Ag+ диффундируют по поверхности тантала, который снабжает их электронами, ускоряющими превращение серебра в Agi. Поэтому пленка Agi распространяется и по поверхности тантала (рис. 10.5). Было обнаружено также [30], что на серебре, покрытом пористым слоем электро-осажденного золота, в атмосфере паров серы при 60 °С образуется очень прочно связанная с поверхностью пленка Ag S. [c.199]


    Были сделаны попытки наваривать тонкий слой платины, на металлы, стойкие в условиях анодной поляризации благодаря образованию неэлектропроводного слоя хлоридов (титан, тантал, ниобий). Платино-титановые аноды прошли промышленные испытания. Электроды с платиновым покрытием толщиной 3 мкм проработали около четырех лет, однако вследствие дефицитности платины они не нашли промышленного применения в хлорной промышленности. [c.139]

    Химическая активность переходных элементов ниже активности непереходных (5, -р-) элементов. Их металлы на воздухе покрыты защитными пленками оксида наиболее плотные защитные пленки у ниобия и тантала, рыхлые (малопрочные) — у цинка, марганца и железа. Все переходные металлы взаимодействуют с галогенами, кислородом, серой, азотом, при сплавлении — с кремнием, бором, углеродом. [c.497]

    Сродство поверхности кремния к кислороду и связанная с этим склонность к формированию тонких оксидных пассивирующих покрытий позволяют при определенных условиях сместить процесс, протекающий на границе кремний—электролит в сторону образования более толстого слоя оксида. Это обычно достигается подачей на кремниевый электрод высокого положительного потенциала. Катодом при этом может служить любой инертный в данном электролите металл (платина, тантал,и т. п.). На практике невозможно получить анодные окисные пленки толще нескольких тысяч ангстрем. Это обусловлено тем, что предельный потенциал, достигаемый в процессе анодного окисления кремния, определяется электрической прочностью оксида. Кроме того, задаваемая величина тока, определяющая скорость роста оксида, также должна быть ограничена, поскольку в противном случае возможен сильный разогрев электролита, кремниевого анода, что делает процесс неуправляемым и сильно ухудшает качество образующейся пленки. [c.116]

    Интересной областью применения является также защита тантала от водородного охрупчивания путем контактирования с металлами платиновой группы. Уменьшение водородного перенапряжения или смещение потенциала свободной коррозии в сторону более положительных значений ведет очевидно к уменьшению степени покрытия поверхности металла адсорбированным водородом и соответственно к уменьшению абсорбции [50]. [c.399]

    Сплав основного металла и металлического покрытия происходит на поверхности, подвергаемой диффузии. Размеры обрабатываемого изделия изменяются незначительно. Диффузионные покрытия применяют для многих металлов и сплавов, включая медь, молибден, никель, ниобий, тантал, титан и вольфрам, но особенно часто — для черных металлов. [c.104]


    Соединения тугоплавких металлов наряду с высокой температурой плавления и твердостью обладают коррозионной устойчивостью во многих агрессивных средах. В качестве коррози-онно-устойчивых материалов и покрытий используются соединения титана, тантала, ниобия, а также карбиды, силициды, бориды и нитриды. Карбид титана устойчив в концентрированной соляной кислоте, а карбиды бора и кремния отличаются высокой коррозионной устойчивостью во многих средах. [c.185]

    Платина абсолютно не подвергается коррозии в морских атмосферах и в морской воде. В условиях погружения в морскую воду она чаще всего применяется в виде покрытия анодов в системах защиты с наложенным током (платинированный титан или тантал), а также в анодной системе свинец—платина. Все типы платинированных анодов для систем с наложенным током очень эффективны. Например, на титане или тантале платиновое покрытие толщиной 2,5 мкм позволяет использовать плотности тока свыше 10 А/дм . Потери при окислении для платиновых анодов в морской воде принимают равными 6 мг/А-год [117]. [c.163]

    Легколетучие бромиды ниобия и тантала, как и бромиды других тугоплавких металлов, применяются при нанесении покрытий ниобия и тантала на другие металлы и материалы [3]. [c.154]

    Поэтому в последние годы вновь возрос интерес к замене графита различными малоизнашивающимися анодами для электролиза хлоридов щелочных металлов с целью получения хлора и каустической соды. Основой для зтого послужили успехи в производствах таких металлов, как титан или тантал, которые могут служить в качестве токоподводящей основы для активного покрытия, например, из металлов или окислов металлов платиновой группы, не подверга- [c.58]

    Предложено активное покрытие из сплава рутения с платиной или родием, а также сплавы титана с марганцем и железом, в которых часть железа может быть заменена металлами платиновой группы или такими металлами, как Ni, Со, Мп, Сг, V, Мо [138]. Предложены различные формы электродов — сетчатые, пластинчатые, перфорированные [142—144]. Сообщается, что при нанесении слоя из металлов платиновой группы на основу из пористого титана или тантала [c.75]

    Тантал обладает прекрасным сочетанием повышенной химической стойкости с большой теплопроводностью,. поэтому ок находит применение в химическом машиностроении для создания теплообменников, работающих в особо агрессивных средах. Поскольку металлический тантал дорог, то часто прибегают к методу плакирования — покрытия листовой стали тонким слоем тантала. Оборудование из тантала со стенками 0,3—0,5 мм работало в коррозионной среде в течение 20 лет и не нуждалось в ремонте. [c.22]

    Чтобы снизить стоимость таких составных анодов, было предложено в качестве основы использовать графитовые плиты, которые сначала покрывают слоем титана или тантала, а затем наносят активный слой [50]. Однако трудности, связанные с получением сплошного титанового или танталового покрытия на графите, не позволяют рассчитывать па использование этого предложения в ближайшее время. [c.22]

    Термической обработкой в инертной атмосфере или в вакууме при остаточном давлении 10 —10 Па (10 —10 мм рт. ст.) при 790 °С в течение 1—2 ч можно дополнительно увеличить сцепление платинового слоя с титановой основой. Термическая обработка предложена также для анодов из тантала, покрытых сплавами мета,[-лов платиновой группы [173]. [c.177]

    МУРАВЬИНАЯ КИСЛОТА (II, 327—331 V, 308—310). Получение амидов из нитрилов [1]. Нитрилы превращаются в амиды с высоким выходом при нагревании при 250 (2 час) с эквимолярным количеством 100%-ной М. к. Реакцию лучше проводить в автоклаве с покрытием из тантала или серебра. [c.179]

    Распылитель и распылительная камера находятся в постоянном контакте с растворами, которые чаще всего являются агрессивными. Поэтому они должны быть изготовлены из коррозионностойких материалов, например из нержавеющей стали. Большей стойкостью обладают распылители, у которых центральный капилляр изготовлен из платиноиридиевого сплава, а остальные детали — из тантала. Используют также тефлоновое покрытие внутренних стенок распылительной камеры. [c.834]

    При осаждении рения на никель на поверхности покрытий образуется пленка черных, зеленых или серых продуктов коррозии. Для предотвращения Такого явления покрытия подвергают отжигу при 700°С в восстановительной атмосфере или катодной обработке в серной кислоте. Рениевые покрытия наносят на титан, тантал, сталь, медь, графит. Для получения покрытий толщиной > 25 мкм ведут многократное наращивание тонких слоев с термообработкой каждого слоя. [c.89]

    Данные о коррозионной стойкости различных металлов и сплавов, а также неметаллических покрытий в водных растворах формальдегида [34, 35] приведены в Приложении 1. Для сравнения там помещены соответствующие данные для растворов муравьиной кислоты, не содержащих формальдегид, а также сведения о коррозионной агрессивности метанола. Как следует из сопоставления таблиц Приложения I, достаточно стойкими к воздействию растворов формальдегида при нормальной и повышенной температуре являются такие металлы, как чистое железо и алюминий, медь, никель, свинец, серебро, тантал, титан и др. Многие из этих металлов, а также платина, ниобий и цирконий мало подвержены коррозии и в присутствии значительных количеств муравьиной кислоты. Однако большинство перечисленных материалов либо слишком дефицитны, либо по физико-механическим свойствам непригодны для изготовления производственной аппаратуры. Из числа конструкционных материалов, применяющихся на практике, достаточно стойки по отношению к формалиновым растворам, в особенности при повышенной температуре, далеко не все. С учетом практической неизбежности накопления хотя бы небольших количеств муравьиной кислоты, непригодны для работы в формалиновых средах, помимо углеродистых сталей, хромистые сплавы, а также некоторые марки алюминия, бронзы, латуни, чугуна и т. д. Напомним, что в соответствии с действующим ГОСТом по коррозионной стойкости металлы разделяются на шесть групп и оцениваются по десятибалльной шкале, причем при скорости коррозии выше 0,1 мм/год материал считается пониженно стойким. [c.30]


    Тантал — пластичный металл, способный вытягиваться в тончайшую проволоку. Благодаря высокой температуре плавления (3000°) и стойкости против коррозии, играет большую роль в современной технике. Химически очень устойчив. Не окисляется на воздухе. На тантал не действуют ни НС1, ни H2SO4, ни крепкие щелочи, ни даже царская водка при комнатной температуре. Поэтому он особенно пригоден для изготовления ответственных частей заводской химической аппаратуры. Тантал служит заменой платины при изготовлении электродов, а также хирургических и зубоврачебных инструментов. Сплав Nb + Та используется как надежное антикоррозионное покрытие. [c.491]

    В пленочных и полупроводниковых микросхемах широко используются различные металлы и сплавы, у которых стабильность электрических характеристик сочетается со стойкостью их к химической и электрохимической коррозии. Для проводников и контактов используются металлы с высокой электрической проводимостью золото, серебро, медь и алюминий, причем последний чаще всего для внутрисхемных соединений. В качестве материалов для резистивных пленок преимущественное применение нашли тантал, нихром, хромосилицидные и другие сплавы на основе хрома и тантала. Одни из названных металлов являются коррозионно-стойкими вследствие их высоких окислительно-восстановительных потенциалов (Аи, Ад), другие — из-за самопроизвольного образования пассивирующих оксидных пленок на их поверхности (А1, N1, Сг, Та). Однако при контакте резисторов из этих металлов и алюминия невозможно избежать образования гальванопар Сг—А], Ы —А1 и др., которые чрезвычайно чувствительны к любого рода загрязнениям. Этими загрязнениями могут оказаться остаточная влага, следы кислорода и некоторые химические вещества, выделяющиеся из стенок корпуса и защитного покрытия при технологических операциях герметизации и защиты микросхем. В результате электрохимической коррозии алюминий в месте контакта разрушается, что в итоге приводит к разрыву электрической цепи. [c.281]

    По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях. [c.48]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    Для водных сред, например для защиты подводных стальных конструкций и сооружений в прибрежном шельфе, а также для внутренней защиты резервуаров, тоже применяют в основном цилиндрические аноды, конструкция которых описана в разделе 8.5.1. Кроме таких материалов как графит, магнетит и ферросилид, дополнительно используют еще и аноды из сплавов свинца с серебром, а также платинированный титан, ниобий или тантал. Впрочем, такие аноды обычно выполняют не сплошными, а в форме труб. В конструкциях из сплавов свинца с серебром это делают ввиду большой массы анодов и сравнительно малой плотности анодного тока в случае платинированных вентильных металлов коррозионному износу и без того подвергается только платиновое покрытие. К тому же трубчатая форма позволяет получить большую площадь поверхности и тем самым больший анодный ток. На подсоединения анодоа из сплавов свинца с серебром распространяются рекомендации, приведенные в разделе 8.5.1. Однако можно припаивать кабель и непосредственно к материалу анодов при помощи мягкого припоя, если обеспечена особо эффективная разгрузка кабеля от растягивающих напряжений. В случае титана это невозможно. Такие аноды должны быть снабжены (в отдельных случаях тоже привариваемым) резьбовым соединением, изготовленным также из титана. В этом случае кабель свинчивается с кабельным наконечником, который тоже может быть изготовлен из титана. Все соединение окончательно заливается литой смолой. Иногда и всю трубу заполняют подходящей заливочной массой. Ввиду плохой электропроводности титана целесообразно в случае сравнительно длинных анодов с большой нагрузкой осуществлять подвод тока параллельно на обоих концах. [c.210]

    В — от об. до 150 С в растворах любой концентрации при наличии окислителей (тантал). И — покрытия для реакто ров, нагреваюшие и охлаждающие змеевики. [c.246]

    ДЛ Я растровой электронной М икроскопии высокого разрешения, использующей электроны, потерявшие малую часть энергии, где конТ раст зависит от рассеяния высокознергетических электронов от поверхности образца, образец следует покрывать тонким слоем тяжелого металла., который не дает структуры на уровне разрешения 1 нм. Экспериментальная проверка подтверждает, что тугоплав юие металлы, такие, как тантал или В ольфрам, обеспечивают такое покрытие. [c.181]

    Было предложено наносить на, графит плотный тонкий слой титана или тантала и затем покрывать анод активным слоем [132]. При использовании графита в качестве токоиесзщей основы анода необходимо на графит наносить плотное покрытие, чтобы предотвратить разрушение графитовой основы электрода в процессе электролиза. [c.74]

    В последнее время большое внимание уделяется сокращению количества платины в производстве перхлората, или замене ее другими материалами для изготовления анодов Возможно использование тантала или титана в качестве токоподводящих металлов, на которые наносится слой платины 215-217 Описано 2 использование в производстве перхлората натрия анодов из двуокиси свинца, нанесенной электроосаждением на токоподводяидую основу из графита. Устранение механических повреждений покрытия и придание ему однородности достигается обработкой эпоксидной смолой, силиконовым каучуком или другими аналогичными материалами. В качестве токоподводящей основы для анодов из двуокиси свинца вместо графита можно также применять тантал 2is  [c.723]

    Предложено наносить па поверхность графита слой титана, тантала или других пленкообразующих металлов, а также карбидов или нитридов титана, а затем на него активно работающий слой, содержащий металлы платиновой группы [113], либо наносить на поверхность графита, обработанную термически, слой из окислов (толщиной -<10 мкм), содержащих рутений [114] либо другое стойкое к окислению покрытие [115]. Предложены также графитовые электроды, импрегнированпые растворами солей рутения и платины с последующей терл1ической обработкой для снижения анодного потенциала и увеличения коррозионной стойкости графита [116]. [c.103]

    Повысить стойкость анода при контакте с амальгамой можно, используя также различного рода пористые аноды [15], в том числе и аноды с активированием обратной стороны электрода, не обращенного к слою амальгамы. При этом необходимо учитывать потери напряжения в пористом титановом слое основы анода. Известно, что при нанесении активного слоя, содержащего металлы платиновой группы, на основу из пористого титана или тантала можно получить электроды, стойкие в условиях периодического контакта их с амальгамой натрия [16]. Наиболее рациональный путь повышения стойкости таких анодов в условиях электролиза с ртутным катодом, по-видилю.му, заключается в нанесении на активное покрытие защитного пористого слоя из диэлектрических материалов, не смачиваемых ртутью и амальгамами. [c.140]

    В патентах И. В. Беера и аналогичных им предлон<ено много вариантов получения анодов с активным слоем, содержащим окислы металлов платиновой группы [1, 2]. На основу электрода из пленкообразующего металла (титана, тантала, циркония, ниобия или их сплавов) наносят активное покрытие из смеси окислов металлов, содержащее не менее одного окисла благородного металла платиновой груипы (Р1, 1г, КЬ, Р(1, Кн, Оз), а также окислы металла основы и добавки окислов неблагородных металлов. [c.186]

    Активное покрытие может быть образовано из рутенатов или иридатов и электропроводного флюса, стойкого к среде, в которой проводится электролиз (причем коэффициент термического расширения близок к коэффициенту основы-анода) [25], или с поверхностным слоем из окислов тантала, получаемым термическим разложением солей этого металла [26], а также из смесей Кн и Р1 и Кп и 1г [27]. [c.187]


Смотреть страницы где упоминается термин Покрытия из тантала: [c.317]    [c.150]    [c.270]    [c.131]    [c.138]    [c.12]    [c.206]    [c.180]    [c.558]    [c.558]    [c.195]    [c.201]    [c.495]    [c.201]    [c.208]    [c.160]    [c.187]    [c.89]   
Смотреть главы в:

Новые конструкционные химически стойкие металлические материалы -> Покрытия из тантала




ПОИСК





Смотрите так же термины и статьи:

Тантал



© 2025 chem21.info Реклама на сайте