Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Криптанд

    Краун-эфиры, криптанды и другие соединения [c.37]

    Краун-эфиры, криптанды и другие соединения, образующие хелаты, как экстрагенты [c.37]

    Криптанд [2.2.2] (криптофикс [222], 1,10-диаза-4,7,13,16,21,24-гексаоксабицикло[8.8.8 гексакозан) (5) был получен Леном и сотр. [23] в две стадии, как показано на схеме 3.5, с использованием техники высокого разбавления. Другие методы см. в работе (1303], гидроксиметил[2.2.2] см. в [1320]. Описан также синтез криптанда [1.1.1] с выходом 40% [1770]. [c.87]


    Когда такие факторы, как природа субстрата, нуклеофила и уходящей группы, постоянны, активация аниона зависит от растворителя, а также от природы и концентрации лиганда. Бициклические криптанды, такие, как 5, оказывают более сильное влияние, так как они в большей степени охватывают катион, образуя тем самым более стабильные комплексы. В полярных апротонных растворителях крауны обусловливают усиление диссоциации. В других системах (например, грег-бутоксид натрия в ДМСО) ионные агрегаты разрушаются в результате комплексообразования с краунами, что приводит к увеличению основности алкоксида, измеряемой скоростью отщепления протона [101]. В менее полярной среде, такой, как ТГФ или диоксан, доминирующими частицами являются ионные пары. В этом случае краун-эфиры могут благоприятствовать образованию разделенных растворителем более свободных (рыхлых) ионных пар [38, 81] с более высокой реакционной способностью [102]. Даже в гидроксилсодержащих растворителях при добавлении краунов наблюдаются удивительные эффекты, так как изменяются структура и состав сольватной оболочки вокруг ионной пары и ионные агрегаты частично разрушаются. Например, сильно изменяется соотношение син1 анти-изомеров при элиминировании, катализируемом основаниями [103]. [c.40]

    Вернемся к комплексообразованию между ионами щелочных металлов и краунами или криптандами, которое ведет к разнообразным следствиям  [c.39]

    В разд. 1.1 межфазный катализ был определен как двухфазная реакция между солями (в твердой форме или в виде водных растворов), кислотами или основаниями и субстратами, находящимися в органических растворителях, протекающая в присутствии так называемых межфазных катализаторов. Типичными представителями таких катализаторов являются ониевые соли или вещества, образующие комплексы с катионами щелочных металлов, такие, как краун-эфиры, криптанды или их аналоги с открытой цепью. Как уже указывалось в разд. 1.1, определение МФК основано скорее на наблюдаемых эффектах, а не на каком-либо едином механизме. Впрочем, широкие исследования этих эффектов привели к выяснению механизма многих реакций МФК. [c.44]

    Эту новую область координационной химии можно распространить на анионы н другие органические лиганды. Криптанды обладают интересным свойством [c.281]

    При достаточно большом размере полости криптанда в нее могут быть включены несколько катионов вместе с мостиковыми атомами  [c.131]


    В гл. 3 указывалось, что криптанды специфически сольвати-руют катионы щелочного металла из таких солей, как КР, КОАс и т. д. Этот факт может быть использован в синтетических целях для увеличения скоростей реакций нуклеофильного замещения и других реакций путем изменения степени свободы аниона (разд. 10.15). [c.78]

    Не все четвертичные соли и криптанды одинаково хорошо работают во всех ситуациях. Для нахождения оптимального катализатора часто необходимо провести ряд экспериментов. [c.93]

    В случае RLi добавление криптанда (т. 1, разд. 3.2), связывающего катион лития, ингибирует нормальную реакцию присоединения это указывает на то, что присутствие литпя необходимо для течения реакции [324]. [c.369]

    Цифры обозначают три мостика из двух кислородных атомов. Согласно номенклатуре ИЮПАК, это соединение следует называть криптандом.Ярил. ред. [c.38]

    Для целей МФК, по-видимому, можно принять следующий ряд активности при активации аниона краун<криптанд аммониевый катион [129]. [c.40]

    Гидриды и амиды и елочных металлов. Твердые амиды и гидриды также не растворяются при добавлении таких комплексообразующих агентов, как 18-краун-6 [69] или криптанд [2.2.2] [78]. Сообщения и предположения об их солюбилизации, появлявшиеся в литературе, ошибочны. Поэтому все реакции алкилирования в присутствии МФ-катализаторов должны начинаться со стадии депротонирования на поверхности кристалла. [c.67]

    В работе [79] утверждается, что в присутствии чрезвычайно большого избытка 18-краун-6 происходит частичное растворение КН в ТГФ. Полученный при фильтровании в инертной атмосфере раствор был способен депротонировать углеводороды с рКа ниже 36,3. До этого было уже известно, что депротонирование такого типа проходит даже в толуоле под действием трет-аии-лата натрия в присутствии криптанда [2.2.2] [80]. Очень похоже, что гидроксилсодержащие примеси (например, открытый аналог краун-эфира — гексаэтиленгликоль), которые могут быть в использованном для реакции большом количестве 18-краун-6, привели к появлению растворимых алкоксидов, которые в свою очередь и депротонировали углеводороды. Следует отметить, что в системе КН/НСРНз может образовываться ионная пара [(К---18-краун-6)+СРЬз ], которая затем в зависимости от растворителя и примененного комплексанта может либо раствориться, либо дать тонкую суспензию [59]. [c.67]

    Были определгчы выходы и время реакции замещения брома на иод в н-октилбромиде при использовании в качестве катализаторов различных краун-эфиров и трибутил-н-гексадециламмо-нийбромида (см. табл. 3.4). Лучше ониевой соли оказались только некоторые криптанды, имеющие боковую цепь. [c.70]

    Недавпо были определены кинетические параметры для ряда реакций замещения, в которых использовали следующие катализаторы 2-тетрадецил[2.2.2] [82], пергидротрибензо[2.2.2] [93], дициклогексано-18-краун-6 [81], 2-децил[2.2.2], 18-краун-6, различные алкилзамещенные дибензо-18-крауны-6 (83] и гексаде-цилтрибутилфосфониевые соли [81]. Основной вывод из этих работ следующий обычные краун-эфиры достаточно липофильны сами по себе и добавочные боковые цепи не вносят существенного вклада в их свойства. Действительно, активность МФК снижается по мере удлинения боковой цепи [83]. В общем в реакциях МФК-замещения использование краун-эфиров не имеет преимуществ [81, 83]. Они работают особенно плохо в тех случаях, когда в качестве нуклеофилов используют С1 и СЫ [81]. Липофильные криптанды ведут реакцию в 2—5 раз быстрее, чем ониевые соли. В системе НгО/хлорбензол анионы по своей активности располагаются в следующий ряд [82] Ыз > > N >Br >I > l >S N . Сравнение изменений в гидро-фильности, влияющей на экстракцию и каталитическую активность в зависимости от липофильных факторов в молекуле катализатора, было исследовано только в японской работе [84]. [c.70]

    Ряд авторов описали МФ-катализаторы, фиксированные на полимерных подложках. Такие катализаторы представляют большой интерес для промышленного применения, поскольку их легко отделять после окончания реакции и,. кроме того, можно использовать в непрерывных процессах. Этот метод МФК получил название трехфазный катализ [19, 21, 22]. Реакция замещения с 1-бромоктаном при использовании закрепленной аммониевой соли имеет первый порядок ло субстрату. Если полистирол содержит 1—21% групп — H2NRз+ у фенильных колец, то активность таких смол прямо пропорциональна числу этих групп. Увеличение количества фенильных колец, имеющих группы —СНг—NMeз+, в микропорах полистирола до 46—76% приводит к резкому снижению каталитической активности. Продажные анионообменные смолы обычно мало подходят в качестве МФ-катализаторов [19]. Результаты изучения действия иммобилизованных ониевых солей, краун-эфиров и криптандов [20] показали, что в основном механизм реакций с этими катализаторами сходен с нормальным механизмом МФК-реакций. [c.79]

    Активные группы А —КзЫ+ В —КзР+ С — краун-эфир О —криптанд Е — полиэтиленгликоль (эфир) Р — амид фосфорной кислоты О —эфир фосфо-ниевой кислоты Н — аминоксид I — азакраун-эфир К — АзОзНа Ь — Н(0)Кг [c.99]

    Эта реакция с первичными и вторичными субстратами проходит за 1—24 ч при кипячении, выходы до 90% [4, 38, 39, 73, 82, 1045]. В качестве катализаторов были испытаны как четвертичные аммониевые соли, так и краун-эфиры, а также многие первичные, вторичные и третичные амины. Последние в реакционной смеси превращаются в четвертичную соль (кватернизуют-ся), что иногда приводит к увеличению времени реакции [82]. Комплекс тиоцианата калия с 18-.крауном-6 является сравнительно слабым нуклеофилом в гомогенном ацетонитрильном растворе так, он реагирует с бензилтозилатом в 32 раза медленнее, чем ацетат калия [83]. В гексахлорциклотрифосфазене можно заменить все шесть атомов хлора на группы 8СЫ [984]. Растворимый, частично хлорметилированный полистирол был модифицирован путем обработки тиоцианатом натрия в присутствии криптанда[2.2.2] [1217]. Другие реакции замещения на тиоцианатную группу проводят с твердыми солями щелочных металлов в присутствии 18-крауна-6 [1534] и под действием анионообменной смолы амберлит А26 (в тиоцианатной форме) в кипящем толуоле [1507]. [c.138]


    В заключение можно сказать, что проведение омыления в условиях МФК синтетически выгодно в случае стерически затрудненных эфиров. При этом следует использовать систему твердый гидроксид калия/толуол и краун-эфиры или криптанды в качестве катализаторов. Кроме того, скорость гидролиза простых эфиров карбоновых кислот концентрированным водным раствором гидроксида натрия значительно выше для гидрофильных карбоксилатов. Хорошими катализаторами являются четвертичные аммониевые соли, особенно BU4NHSO4 и некоторые анионные и неионные ПАВ. Это указывает на то, что может осуществляться любой из трех возможных механизмов реакции на поверхности, мицеллярный катализ или истинная МФК-реакция. В зависимости от условий может реализоваться каждый из этих механизмов. Как было показано раньше, при МФК возможна экстракция кислот в форме ионной пары R4N+X----HY [57]. Ранние работы, в которых рассматривалось кислотное МФК-омыление, оказались ошибочными [1202, 1348]. Однако недавно было описано мягкое и селективное расщепление трет-бутиловых эфиров, которое происходит при перемешивании с [c.250]

    ТЭБА [247] (схема 3.44), но иногда рекомендуется криптанд, [2.2,2], Синтезы Вильямсона с фенолятами или алкоксилатами,. генерируемыми КН или ЫаН в бензоле или в ТГФ, могут проходить при комнатной температуре [1224, 1379]. [c.156]

    Списано также восстановительное дегалогенирование галоген-бензолов действием КН/криптанд [2.2.2] в ТГФ [1600]  [c.375]

    Следует упомянуть две работы о применении оснований более сильных, чем гидроксид натрия в одной из них описано получение растворимых литиевых, натриевых и калиевых енолятов циклогексанона при действии твердых ЫН, NaH и КН, которое становится возможным или ускоряется в присутствии криптандов. Полученные активированные еноляты способны отрывать протоны даже от эфиров, служаи их растворителем [1309]. В другой работе отмечено, что бутиллитий не реагирует с карбонильными соединениями или карбоксилатами в присутствии криптанда [2.1.1] вместо этого идет депротонирование в а-поло-жение [1482]. [c.194]

    Металлирование дифенилметана рКа 33,4) и трифенилметана рКа 31,1) гидридами натрия или калия в присутствии [2.2.1] или 5 соответственно может быть осуществлено как в ТГФ, так и в бензоле. Этот процесс включает депротонирование на поверхности твердых нерастворимых гидридов [1310]. Система гидрид лития/криптанд[2.1.1] для проведения этих реакций не пригодна. [c.196]

    Из этих результатов ясно, что мягкий МФК-процесс с крип-тофиксом [222] в качестве катализатора очень удобен для стерически затрудненных соединений, хотя стоимость реагента может препятствовать его широкому использованию. Следует подчеркнуть, что по отношению к сложному эфиру необходимо использовать эквивалентные количества краун-эфира или криптанда. [c.247]

    Благодаря введению дополнительной мостиковой связи молекула крауи-акцептора приобрела трехмерную структуру такие молекулы Лен назвал криптандами [149). Подобные соединения, имеющие макроциклическую структуру с внутрик40лекулярн0ц [c.279]

    Криптанды образуют комплексы включения криптатного типа криптаты) с пикратамн щелочных металлов (Ма+, К+ или С8+). Криптанды функционируют как переносчики катионов, растворяя пикрат щелочного металла в жидкой хлороформной мембране в виде ионной пары криптат — пикрат (1 1), а затем освобождая его в ннтерфазу наружного водного слоя [149]. Путем сравнения установлено, например, что 5-4 переносит К а+ и К+ гораздо быстрее, чем 5-1. Это означает, что в результате удаления двух кислородсодержащих связывающих центров криптанд превращается из специфического рецептора К (5-1) в специфический переносчик. К+ (5-4). Работа Лена по криптатам позволила создать лиганды, которые в зависимости от структуры могут быть либо рецепторами, либо переносчиками катионов. Наиример, для 5-1 как переносчика эффективность [c.280]

    В-третьих, к макроциклическим относят и криптанды (от греч. кгур1о5 — тайный, скрытый) — лиганды типа [c.130]

    Краун-эфиры и другие криптанды [349]. В гл. 3 указывалось, что определенные криптанды могут окружать определенные катионы. Такая соль, как цианид калия, при взаимодействии с дицикл>огексано-18-краун-6 превращается в новую соль с тем же анионом, но катионом в которой будет намного большая частица с положительным зарядом, равномерно делокализованным по большому объему и, следовательно, менее концентрированным. Такой катион в значительно меньшей степени, чем катион калия, сольватирован водой и в большей степени склонен растворяться в органических растворителях. И хотя цианид калия обычно нерастворим в органических растворителях,-крии-татная соль растворима в большинстве из них. В этих случаях нет необходимости в водной фазе, соль просто добавляют к ор- [c.93]


Смотреть страницы где упоминается термин Криптанд: [c.39]    [c.81]    [c.92]    [c.98]    [c.274]    [c.365]    [c.407]    [c.51]    [c.7]    [c.142]    [c.121]    [c.128]    [c.93]    [c.98]   
Биоорганическая химия ферментативного катализа (1987) -- [ c.83 ]

Краун-соединения Свойства и применения (1986) -- [ c.2 , c.3 , c.163 , c.168 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.285 ]




ПОИСК





Смотрите так же термины и статьи:

Коновалова криптанд

Константы устойчивости комплексов трициклических криптандов

Краун-эфиры, криптанды и другие соединения, образующие хелаты, как экстрагенты

Криптанд в присутствии

Криптанд как катализатор

Криптанд как катализатор полимеризации

Криптанд как межфазный катализатор

Криптанд комплексы

Криптанд кристаллическая структура

Криптанд полимеризации

Криптанд растворимость в органических

Криптанд растворителях щелочных металлов

Криптанды бициклические, оптически активны

Криптанды восстановление

Криптанды диаметр полости

Криптанды как катализаторы полимеризаци

Криптанды комплексы Криптаты

Криптанды конформации

Криптанды оптически активные

Криптанды привитые к полистиролу

Криптанды растворимость в органических растворителях щелочных металлов в присутствии

Криптанды свойства

Криптанды синтез

Криптанды сферические

Криптанды тетрациклические

Криптанды трициклические

Макроциклические соединения, содержащие кислород и другие донорные атомы. Криптанды



© 2024 chem21.info Реклама на сайте