Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовый анализ металлов

    Другим современным методом, служащим для построения диаграмм состояния, является метод рентгеноструктурного анализа. Рентгеноструктурный анализ является одним из наиболее совершенных методов изучения всех превращений, сопровождающихся изменением кристаллической решетки. Поэтому он особенно полезен при исследовании полиморфных превращений, образования и распада твердых растворов, а также образования химических соединений. Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения. Рентгеноструктурный анализ применяется для качественного и количественного фазового анализа гетерогенных систем, для исследования изменений в твердых растворах, определения типа твердого раствора и границ растворимости. Рентгеноструктурный анализ является дифракционным структурным методом он основан на взаимодействии рентгеновского излучения с электронами вещества, в результате которого возникает дифракция рентгеновского излучения. Основную информацию в рентгеноструктурном анализе получают из рентгенограмм. Типы рентгенограмм сильно зависят от природы и состава фаз. Между типом рентгенограммы и типом диаграммы состояния существует определенная связь. Особенно полезны рентгенографические данные для построения той части диаграмм, которые описывают равновесные процессы в твердом состоянии, где процессы установления равновесных состояний протекают очень медленно. [c.235]


    Для контроля структуры материалов в большинстве случаев используют влияние структуры и фазового состава на затухание илн скорость распространения ультразвуковых колебаний в металлах и сплавах. Предпосылкой возможности ультразвукового структурного анализа металлов явились теоретические и экспериментальные исследования процессов поглощения и рассеяния ультразвука в поликристаллических материалах, проведенные отечественными и зарубежными учеными [68, 70, 81, 148 и др. . Установленные закономерности влияния структуры и химического состава на затухание ультразвуковых колебаний в металлах и сплавах позволили разработать методики производственного контроля и создать специальную аппаратуру. Опыт показывает, что для изучения особенностей структуры металла по затуханию УЗК не всегда необходимо определять коэффициент затухания по известной методике, рассмотренной в начале настоящей главы. Например, для оценки общей неоднородности структуры сварного шва достаточно проследить характер изменения амплитуды сигнала по длине шва на некоторой заданной частоте ультразвуковых колебаний без вычисления коэффициента затухания (рис. 40). [c.67]

    Проведенные качественный рентгеноструктурный фазовый анализ рабочей поверхности кристаллизаторов и налипших на нее за время литья металлов и других веществ, оптический анализ микрошлифов, приготовленных из всех температурных зон вдоль направления литья, а также качественный рентгеноспектральный анализ позволяет предположить следующие механизмы, приводящие к износу графитовых кристаллизаторов при горизонтальном непрерывном литье сплава нейзильбер  [c.34]

    Выше рассмотрены методы разложения руд описаны методы химического анализа марганцевых руд [286, 425], фосфатных руд [350], фазовый анализ руд цветных металлов и продуктов их переработки [470], разложение и анализ сульфидных руд и руд цветных металлов [16]. [c.190]

    Важное значение для разделения ряда элементов имеет электролитическое осаждение на ртутном катоде, причем осаждение облегчается образованием амальгам. Так, например, для определения примеси алюминия в железных сплавах железо и многие другие металлы осаждают из сернокислого раствора на ртутном катоде, причем алюминий остается в растворе. Наконец, можно указать на применение анодного растворения металлов. Так, например, для определения неметаллических включений в стали и различных цветных сплавах поступают следующим образом. Образец металла опускают в раствор соответствующего электролита и включают ток, причем исследуемый металл является анодом. Во время электролиза металл переходит в раствор, а неметаллические примеси остаются в виде осадка. Этот метод имеет большое значение для фазового анализа металлов. [c.190]


    Для фазового анализа применяется ряд физических и химических методов. Наиболее обычным физическим методом фазового анализа металлов и силикатов является микроскопическое исследование. В микроскопическом исследовании металлов обычно предварительно травят полированную поверхность металла тем или другим химическим реактивом для более четкого выделения поверхности раздела отдельных фаз. В результате выявляется определенная структура металла, которую наблюдают под микроскопом. При исследовании различных горных пород применяют, кроме того, разделение измельченной породы на фракции по удельному весу, отделение магнитных минералов (а также частиц металлического железа, внесенного при бурении скважины) посредством магнита (магнитная сепарация) и т. д. В некоторых случаях для целей фазового анализа изучают изменение свойств материалов при нагревании (термографический анализ), применяют рентгеновские и другие методы исследования. [c.14]

    Фазовый анализ. В отличие от элементного анализа цель фазового анализа — разделение и анализ отдельных фаз гетерогенной системы, например железной или марганцевой руды, сплава, шлака и др. Основной областью применения фазового анализа является изучение распределения легирующих элементов в многофазных сплавах, определение зависимости количества, дисперсности и состава фаз от термической и механической обработки, вариаций химического состава, влияния различных добавок на свойства вещества. С помощью фазового анализа определяют также количество и состав неметаллических включений в металлах (оксидов, сульфидов, нитридов, карбидов), выделяют фазы в свободном состоянии. [c.824]

    В химическом машиностроении магнитные и электромагнитные методы контроля применяют для дефектоскоп и и, толщинометрии, структурного и фазового анализов металлов, определения наличия и глубины МКК нержавеющих сталей.  [c.133]

    В Советском Союзе фазовый анализ развивается более интенсивно, чем в других странах. Об этом можно судить по числу публикаций в СССР напечатано более половины всех работ по фазовому анализу. Есть две области приложения аналитической химии, где фазовый анализ особенно важен металлургия и металловедение (фазовый анализ металлов и сплавов) и исследование минерального сырья (фазовый анализ горных пород, минералов и руд). Более развит фазовый анализ металлов и сплавов есть сложившиеся исследовательские группы, накоплен большой опыт, выпущены практические руководства. Правда, в методах много эмпирического, научные основы химических методов фазового анализа металлов и сплавов разработаны недостаточно, а современные физические методы применяют пока не очень широко. Фазовый анализ горных пород, минералов, руд и продуктов их первичной переработки также привлекает большое внимание, поскольку он очень важен, например, для цветной металлургии. Здесь тоже накоплен значительный опыт и многие задачи так или иначе решаются, однако преобладают эмпирические приемы, слабо используются достижения физических методов анализа. Объекты анализа очень разнообразны, определяемые формы нужных элементов в ряде случаев довольно многочисленны. Это делает фазовый анализ пород, минералов и руд весьма трудной областью аналитической химии. [c.12]

    Рентгенофазовый анализ широко используют в металловедении (для изучения фазового состава металлов и сплавов), в минералогии (для установления состава сложных минералов), в химии и химической технологии, [c.124]

    Большое внимание уделяется фазовому анализу металлов и сплавов. Это своеобразное направление наиболее развито в нашей [c.100]

    Исследования по теории электрохимического фазового анализа металлов. Разделение аустенита и мартенсита.— Завод, лабор., 1962, 28, № 5, 523—528. Библиогр. [c.208]

    Методы фазового анализа имеют очень большое значение в иссле ,ова-иии металлов. Так, например, углерод в сплавах черных металлов может [c.13]

    В фазовом анализе бокситов, медных руд, марганцевых руд, в исследовании отдельных стадий восстановления металлов из руд и в ряде других случаев также часто применяют ступенчатое растворение отдельных составляющих . Этот же метод применяется для определения свободной извести в цементе, для определения сульфидной серы наряду с сульфатной и т. д. [c.14]

    Фазовый анализ — установление наличия и содержания отдельных фаз исследуемого материала. Так, углерод в стали может находиться в виде графита и в форме карбидов — соединений железа (или другого металла) с углеродом. Задача фазового анализа — найти, сколько углерода содержится, в виде графита и сколько в виде карбидов. [c.12]

    Особым разделом аналитической химии является качественный фазовый анализ — разделение и идентификация отдельных фаз гетерогенной системы. Объектами исследования в фазовом анализе являются металлы, сплавы, минералы, руды. С помощью фазового анализа определяют состав неметаллических включений в металлах (оксидов, сульфидов, нитридов, карбидов), изучают распределение легирующих элементов в многофазных сплавах. Минералы в большинстве случаев содержат различные примеси в форме включений и в то же время минералы являются фазовыми составляющими руд как гетерофазных систем. Для разработки рационального технологического процесса отделения ценных компонентов руды от пустой породы и дальнейшей переработки концентрата необходимо знать минеральный состав руды. [c.449]


    В фазовом анализе руд и других неметаллических материалов часто после измельчения исследуемой пробы используют различные физические методы разделения, например по плотности, на основе различия магнитных и электрических свойств. Главным же образом при фазовом анализе руд и в особенности металлов и сплавов химические методы применяют для избирательного растворения, а в металлургическом фазовом анализе применяют прежде всего электрохимические методы, основанные на селективном анодном растворении фаз сплава. [c.825]

    Структурный и фазовый анализ сварных швов нержавеющих сталей. Для заводской практики большой интерес представляет разработка таких методов и средств контроля, которые позволи-лили бы оценивать структурное состояние металла шва или около-шовной зоны непосредственно на изделиях после сварки. Решение этой задачи особенно важно для сварных швов нержавеющих сталей, так как в некоторых случаях даже незначительные изменения условий сварки могут вызвать существенные отклонения от нормальной структуры металла шва. Металл шва может оказаться весьма неоднородным как по высоте, так и по длине. Выполненные исследования [50, 104, 109] показали, что для этой цели можно успешно применять ультразвуковой метод контроля. [c.96]

    Б. а. применяют для анализа материалов деталей приборов, миниатюрных изделий и т.п., установления качества черных, цветных и особенно благородных металлов и их сплавов. Этим методом проводят также послойный и фазовый анализ в-в. Он отличается быстротой вьшолнения, небольшим расходом реактивов и анализируемых материалов. [c.284]

    Кроме дефектоскопии магнитные и электромагнитные методы применяют также для фазового анализа нержавеющих сталей. Количественное определение б-феррита в нержавеющих сталях имеет большое практическое значение. Например, стойкость сварных швов аустенитных сталей против образования кристаллизационных (горячих) трещин находится в прямой зависимости от фазового состава металла шва. В многочисленных работах советских исследователей показано, что удовлетворительная тре-щиноустойчивость металла аустенитных хромоникелевых швов с наибольшей эффективностью достигается путем обеспечения 2—5% ферритной фазы в его структуре. Существенное влияние оказывает б-феррит на развитие общей и межкристаллитной коррозии. В работах [104, 109] показано также значительное влияние ферритной фазы на затухание и скорость распространения УЗК в сварных швах нержавеющих сталей, а следовательно, и на де-фектоскопичность. [c.141]

    В соответствующих руководствах подробно описаны методы разложения горных пород и минералов [161], силикатных и карбонатных горных пород [383, 1476], руд цветных металлов [465], а также методы фазового анализа на соединения серы [470]. Разложению серусодержащих органических соединений посвящены монографии [235, 441], обзор [720]. [c.158]

    Филиппова Я. А. Фазовый анализ руд цветных металлов и продуктов их переработки. М., Химия , 1975. [c.236]

    Для фазового анализа широко применяются химические методы. При этом используется обычно различная (избирательная) растворимость отдельных фазовых компонентов материала. Так, например, в фазовом анализе глин определяют содержание глинистого вещества (водного силиката алюминия и железа), полевого шпата (алюмосиликатов ш,елочных или щелочноземельных металлов) и кварца. Сначала глину обрабатывают в определенных условиях соляной или серной кислотой в результате глинистое вещество разлагается, а кварц и полевой шпат остаются без изменения. Отфильтровав раствор солей алюминия и железа, выделившуюся при разложении силиката аморфную кремневую кислоту переводят в раствор, нагревая с раствором соды. Взвесив нерастворимый остаток, можно по потере в весе вычислить количество глинистого вещества. После этого остаток обрабатывают плавиковой или борофтористоводородной кислотой, которые легко разлагают полевой шпат и очень медленно действуют на кварц. [c.14]

    Рентгеновские дифрактометры ДРФ-2,0 и ДАРТ-2,0 имеют более узкие области применения. Дифрактометр ДРФ-2,0 предназначен для проведения фазового анализа поликристаллов в условиях заводских и научно-исследовательских лабораторий. Егв целесообразно использовать в тех случаях, когда имеют деде с большим количеством образцов различного состава. Дифракционный спектр в дифрактометре ДРФ-2,0 регистрируется в интервале углов от О до 150° при точности их измерения 0,05° [8]. Рентгеновский дифрактометр ДАРТ-2,0 служит для изучения текстур в металлах, сплавах и других кристаллических веществах [91. С его помощью можно строить полюсные фигуры для фолы, листов и шлифов с высокой точностью и малыми временнйми затратами. [c.133]

    Последовательность выполнения работы. Подготовить эталонный образец (MgO, Na l, Al). Подготовить образец для исследования на просвет (металлическую, например, алюминиевую фольгу, приготовленную травлением). Подготовить образец для исследования на отражение (шлиф металла или сплава). Снять электронограммы эталонного вещества, изучаемого вещества на просвет или на отражение, изучаемого и эталонного вещества одновременно (последнее проводить нанесением эталонного вещества ка готовый препарат, например каплю раствора Na l на готовый образец, если он не растворяется в воде). Определить постоянную прибора, используя данные о межплоскостных расстояниях ((Ihkl) эталона из справочников. Провести качественный фазовый анализ образца по полученной электронограмме. Определить кристаллическую структуру одной из фаз объекта. Радиус колец измерить металлической линейкой или с помощью компаратора с возможной точностью в двух взаимно перпендикулярных направлениях. При-использовании линейки со скошенным краем измерения записывать с точностью до 0,1 мм. На рис. 46 показана схема [c.105]

    Для проведения автоматического фазового анализа необходимо создание специальной машинной базы данных для стандартов, включающей для каждого стандарта только сведения, необходимые для поиска. Минимальный набор таких данных ( поисковый файл ) обычно включает только номер карточки PDF J PDS [4], или Н с соответствующими интенсивностями, а также химичес1<Гую формулу стан дарта (иногда еще и название, но из-за отсутствия общепринятой номенклатуры это вряд ли целесообразно, даже в случае минералов). В существующих программах поиск ведется либо в пакетном режиме (без вмешательства исследователя на промежуточных стадиях), либо в диалоговом. Практически во всех системах автоматического фазового анализа основой базы данных является картотека ASTM- О С PDS или выборки из нее (например, неорганические соединения, органические, минералы, металлы и сплавы, наиболее часто встречающиеся вещества и т.д.). Но даже поисковый файл для большого круга объектов слишком велик, чтобы его целиком можно было ввести в машинную память ЭВМ, поэтому для хранения машинных баз данных используются внешние запоминающие устройства - накопители на магнитных лентах ( НМЛ ) или дисках ( НМД). Быстродействие программ в значительной степени определяется скоростью обмена информацией между оперативной памятью ОПМ и НМЛ или НМД. [c.49]

    Все перечисленные свойства и термодинамические характеристики (АН, АО и 5) зависят от состава фаз, поэтому при их описании надо точно указывать результаты химического и фазового анализа. Бориды переходных металлов являются фазами промежуточного характера между интерметаллическимн соединениями и фазами, внедрения (типичный пример фаз внедрения — карбиды).. Бориды, как и многие силициды переходных металлов,, имеют разнообразную и сложную структуру, что связано со способностью атомов бора (соответственно кремния) образовывать между собой валентные связи. Сплициды тугоплавких металлов в отличие от карбидов, нитридов-н многих боридов не являются фазами внедрения (из-за большей величины атомов кремния). [c.403]

    Ф. а. металлов и сплавов появился впервые в кон. 19 в. как анализ осадка , т. е. нерастворенного остатка после обычной аналит. процедуры р-рения металла в к-те. Такие осадки состояли из карбидов и оксидов элементов, входящих в состав сталей. Осмысление результатов этого анализа послужило стимулом к поискам более точных и управляемых методов вьщеления как существенных фазовых составляющих - карбидов и нитридов, так и примесей неметаллич. включений -оксидов, сульфидов и т. п. В результате этого в 30-х гг. 20 в. возникли разл. варианты анодного растворения. Теория электрохим. фазового анализа сплавов была разработана только в 50-х гг. 20 в. в связи с определением интерметаллидных соед. в жаропрочных сплавах. Одновременно произошла стыковка такого Ф. а. с др. первоначально особым направлением аналит. химии в металлургии - анализом 1азообраз то-щих примесей в металлах. Для Ф. а стали использовать физ. методы, прежде всего рентгеновский фазовый анализ, электронографию, а также электронно-зондовые методы, методы эмиссионного спектрального анализа, резонансные методы (напр., ядерный магнитный резонанс). [c.56]

    Электронофафически можно проводить фазовый анализ в-ва (в этом случае совокупность значений и сравнивают с имеющимися банками данных), можно изучать фазовые переходы в образцах и устанавливать геом. соотношения между возникающими фазами, исследовать полиморфизм и политипию. Методом Э. исследованы структуры ионных кристаллов, кристаллогвдратов, оксидов, карбвдов и нитридов металлов, полупроводниковых соединений, орг. в-в, полимеров, белков, разл. минералов (в частности, слоистых силикатов) и др. Э. часто комбинируют с электронной микроскопией высокого разрешения, позволяющей получать прямое изображение атомной решетки кристалла. [c.451]

    Кулонометрия является абсолютным методом, ее применяют пе только для определения массы вещества, участвующего в электрохимической и химической реакциях, но и для решения других задач. Нанример, для исследования стехиометрии, кинетики реакций, протекающих в жидкой, твердой, газовой фазах, идентификации образующихся нри этом продуктов, а также для изучения состава малорастворимых, комплексных соединений, разделения металлов и, наконец, в фазовом анализе. Особо важным является исиользование этого метода в различных отраслях иромыш-ленности, нанример для изучения коррозии металлов или изделий из них. [c.120]

    Эксплуатация печей некоторых этиленовых установок в первые годы после пуска сопровождалась значительным выходом труб змеевиков из строя. Образцы с язвенной коррозией участка трубы со сварным швом, соединявшим трубы, после 1547, 8414 и 3300 ч работы анализировались [334, 371, 372]. Наблюдаемая на образцах коррозия может быть вызвана присутствием в среде щелочи, сульфидов, сульфатов и карбонатов, а также хлоридов, которые с металлом и кислородом образуют легкоплавкие либо летучие соединения и усиливают коррозионное разрушение металла. Рентгеноструктурный фазовый анализ продуктов коррозии выявил, что они состоят из РегОз, Рез04 и v-фазы, а количественный и качественный анализы выявили наличие в продуктах коррозии сульфидной серы. [c.177]

    Проанализированы образцы промышленных пылей, содержащих смеси перренатов тяжелых металлов, дисульфида рения, двуокиси рения. По разработанной схеме фазового анализа последовательно извлекают перренаты щелочным раствором комплексона III, дисульфид рения щелочным раствором перекиси водорода. Из остатка извлекают двуокись рения раствором Fe ls 1559]. [c.249]

    Корреляция между магнитными и физико-химичес-кими свойствами материала служит основой для магнитного анализа качества и структуроскопии ферромагнитов. Она возникает в тех случаях, когда физические и химические процессы образования и перестройки структуры и фазового состава металла одновременно формируют его магнитные свойства. [c.361]


Смотреть страницы где упоминается термин Фазовый анализ металлов: [c.216]    [c.4]    [c.107]    [c.336]    [c.9]    [c.15]    [c.491]    [c.74]    [c.609]    [c.473]    [c.406]    [c.74]   
Аналитическая химия. Кн.2 (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ фазовый



© 2025 chem21.info Реклама на сайте