Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диоксид углерода очистка

Рис. 8.21. Схема очистки природного газа с высоким содержанием сероводорода и диоксида углерода Рис. 8.21. <a href="/info/149039">Схема очистки природного</a> газа с <a href="/info/1810102">высоким содержанием</a> сероводорода и диоксида углерода

    Диоксид углерода — относительно малотоксичный газ. Поэтому специальных способов очистки выбросов в атмосферу от диоксида тлерода в настоящее время не н])именяют. Но в промышленности от него очищают ряд технологических газов (в первую очередь, этилен), предназначенных для дальнейшей переработки и где диоксид углерода является нежелательной примесью. [c.47]

    Технологическая схема щелочной очистки газа от меркаптанов мало отличается от схемы очистки моноэтаноламином, только регенерация раствора щелочи проводится открытым водяным паром или продувкой горячим воздухом, или последовательно тем и другим. В случае очистки газов от диоксида углерода равновесное давление газа над абсорбентом равно нулю, что позволяет осуществлять многократную циркуляцию абсорбента с выводом части его из системы и дозированием свежего. Такая схема щелочной доочистки газов пиролиза, используемая в этиленовом производстве на установке ЭП-300, приведена на рис. ХП1-1. Газ после IV ступени турбокомпрессора (с установки ЭП-300) при давлении [c.115]

    Смесь водорода, диоксида углерода и водяного пара охлаждают далее в теплообменниках 6 до 104 °С и направляют в абсорбер 14 на очистку горячим водным раствором карбоната калия от диоксида углерода. [c.63]

    Возможно сочетание мембранных н традиционных способов разделения, таких как абсорбция, адсорбция, дистилляция. Интересно предложение [42] о совместной очистке природного и нефтяного (попутного) газов с высоким содержанием диоксида углерода комбинированным методом, сочетающим мембранный и абсорбционный методы (рис, 8.20). [c.299]

    Основными аппаратами этаноламиновой очистки газов являются абсорбер и десорбер колонного типа с насадкой или тарелками. Технологическая схема типовой установки очистки углеводородных газов от сероводорода и диоксида углерода раствором моноэтаноламина приведена на рис. VI- . Производительность установки по сырью 170 тыс. т/год. [c.57]

    Методы очистки газов от диоксида углерода можно разделить на следующие группы  [c.47]

Рис. 14. Схема установки для очистки газов от диоксида углерода водой Рис. 14. <a href="/info/13990">Схема установки</a> для <a href="/info/28275">очистки газов</a> от <a href="/info/2949">диоксида углерода</a> водой

    МЭА-процесс до конца 50-х годов был практически единственным способом очистки природного газа от сероводорода и диоксида углерода. [c.171]

    Давление в абсорбере должно быть высоким (2 МПа и более), поскольку реакции смещаются вправо в соответствии с парциальным давлением кислых газов. При регенерации раствора реакции протекают в обратном направлении. При отсутствии СО2 бисульфид калия очень трудно регенерировать, поэтому процессы с горячим карбонатом калия не рекомендуются для очистки газов с очень низким содержанием диоксида углерода. [c.176]

    Реакции изомеризации обратимы, поэтому равновесное содержание изомеров в смеси зависит от температуры процесса. Начинается изомеризация при 100—150°С, но скорости реакций при этом слишком низки. Для их повышения используют высокоактивные катализаторы и повышенные температуры (300— 400 °С). Для предотвращения разложения углеводородов и отложения кокса на катализаторе процесс осуществляют в присутствии водорода под общим давлением до 3—4 МПа. Применение высокоэффективных платиновых и палладиевых катализаторов предъявляет жесткие требования к качеству сырья и водородсодержащего газа. Диоксид углерода, влага и особенно сернистые соединения дезактивируют катализаторы. Поэтому требуется предварительная осушка и очистка водородсодержащего газа и сырья (рис. 69). [c.219]

    Очистка газов от диоксида углерода [c.47]

    В настоящее время очистку растворами щелочи применяют для удаления сероводорода, диоксида углерода, низших меркаптанов, нефтяных кислот, кислых продуктов после сернокислотной очистки и других нежелательных примесей из нефтепродуктов. Щелочной очистке подвергают углеводородные газы, бензиновые, керосиновые, реже дизельные и масляные дистилляты. [c.114]

    Фирмой Дюпон (Канада) для производства полупродуктов получения найлона — адипиновой кислоты и гексаметилен-диамина— разработан новый процесс очистки концентрированных сточных вод, богатых азотсодержащими соединениями, путем биологической нитрификации — деиитрификациц. В разработанном процессе предусматривается сочетание аэробного и анаэробного окисления. Нитрификация протекает в аэробных условиях в присутствии диоксида углерода, причем аминный и аммиачный азот биоокисляется до нитритов и нитратов. Денитрификация протекает в анаэробных условиях в среде биораз-лагаемого продукта (обычно метанола). При этом нитраты восстанавливаются до нитритов и в конечном счете до газообразного азота. Поступающие на очистку стоки имеют следующую характеристику содержание общего органического углерода — 3000 мг/л NO2 , N0 3, NH4+ в пересчете на азот соответственно 800, 90 и 230 мг/л органического азота в пересчете на азот —240 мг/л, БПК —6000 мг/л. Процесс позволяет удалять 98% органических веществ и 80—90% общего азота сточных вод. [c.105]

    Щелочная очистка углеводородных газов предназначена для извлечения меркаптанов и частично диоксида углерода. В условиях равновесия диоксид углерода вытесняет меркаптаны из раствора. Однако при концентрации СО2 более 0,1 % (об.) скорость [c.114]

    Аналогичная схема щелочной очистки газов от диоксида углерода используется на установках производства инертного газа. Очистка проводится 10 %-ным раствором щелочи. [c.116]

    Как только водяные капли попадают на Землю, вода быстро теряет свою относительную чистоту. В дождевой воде растворяются или суспендируются органические вещества — результат жизнедеятельности живых организмов. В нескольких сантиметрах под слоем почвы находятся бактерии, которые поедают эти органические вещества и диоксид углерода, воду и другие простые вещества. Иначе говоря, эти бактерии осуществляют вторичную очистку воды. [c.81]

    Схема и параметры работы комбинированного метода (мембранное разделение и абсорбция) очистки газа с высоким содержанием сероводорода и диоксида углерода даны на рис. 8.21 ив табл. 8.12 [65]. [c.300]

    При аэрации отбросов образуется газ, содержащий около 65% метана СН4 и 25% диоксида углерода СО2. Метан - хорошее горючее природный газ, который вы сжигаете в бытовой газовой плите, в основном состоит именно из него. На некоторых станциях очистки канализационных вод этот газ собирают и используют для нагрева и высушивания отбросов. [c.89]

    Биогаз, полученный анаэробным разложением отходов, содержит метан [ 60% (об,)] и диоксид углерода [ 40% (об,)]. В газе присутствуют сероводород, аммиак, пары воды теплотворная способность его невысока— 19,5— 19,8 МДж/м После очистки и осушки газ должен содержать не менее 98% (об,) СН4 (теплотворная способность не менее 33,0 МДж/м ), концентрация Нг8 не должна превышать (3—5) 10 % (3—5 млн ). [c.302]


    Схема установки очистки газа от диоксида углерода этим методом приведена на рнс. 14. Газ промывают холодной водой в башнях с насадкой (скрубберах) под давлением 1,5—2,5 МПа, так как растворимость дноксида углерода в воде возрастает с повышением давления. При этом из газа удаляется частично и сероводород, растворимость которого также увеличивается. Затем давление снижают, и из воды выделяется (десорбир -ется) газ, содержащий до 85% диоксида углерода (остальное — водород, азот, сероводород), который используют для получения сухого льда, карбамида, соды и других продуктов. [c.48]

    ОЧИСТКА ГАЗОВ ОТ ДИОКСИДА УГЛЕРОДА И СЕРОВОДОРОДА [c.285]

    Следует отметить, что комбинация мембранного метода получения гелиевого концентрата [75—95% (об.) Не] с криогенным (получение чистого гелия) позволит примерно на 20% снизить себестоимость товарного продукта [71, 116. В случае, если природный или нефтяной газы наряду с гелием содержат диоксид углерода, целесообразной представляется мембранная очистка этих газов от СО2 с последующим извлечением гелия из потока пермеата. [c.326]

    Биохимическая очистка сточных вод основана на способности некоторых микроорганизмов питаться растворенными в воде органическими и некоторыми неорганическими веществами, например, сульфидами, солями аммония и др. В процессе потребления этих веществ происходит их окисление кислородом, растворенным в воде. Часть окисляемого микроорганизмами вещества используется для увеличения биомассы, а другая превращается в безвредные для водоема продукты — воду, диоксид углерода, нитрат- и сульфат-ионы и др. Микроорганизмы могуг окислять органические вещества при небольшой их концентрации, что является важным достоинством биохимической очистки. [c.320]

    Установки разделения предельных газов включают блоки ком-при Мирова.ния и 01хлаждения газов, стабилизации, щелочной очистки от сероводорода и диоксида углерода и разделения. [c.281]

    Смесь водорода, диоксида углерода и водяного пара охлаж — Дс1ют затем в теплообменниках до 104 °С и направляют на очистку [c.164]

    Хемосорбционные методы. Очистка газов водными растворами этаноламинов. При подготовке различных технолог [с-ских газов к переработке (в частности, пирогаза к разделению) используют хемосорбцию диоксида углерода этаполамицамн. [c.48]

    Г1сорбер 2 — холодильник 3, 5 — теплообменники 4 — десорбер — сепаратор 1 — газ на очистку //—очищенный га.з ///— мовоэтаноламин /1 —вода V — диоксид углерода V/ — водяной пар [c.49]

    Сорбционные методы. Наибольшее распространение получил метод хемосорбции, обеспечивающий степень очистки до 99,9%. При этом широко используют этаноламиновую очистку. Mono- и днэтаноламины извлекают из газов как сероводород, так и диоксид углерода, а триэтаиоламин — только сероводород. [c.51]

    В результате побочных реакций моноэтаноламина с диоксидом углерода и присутствующими в углеводородном газе кислородом, сероуглеродом, тиоокси-дом углерода и другими соединениями образуется сложная смесь, имеющая высокие температуры кипения. С сероводородом, например, в присутствии кислорода образуется тиосульфат, не регенерируемый в условиях очистки моноэтаноламином. Количество образующихся побочных продуктов примерно 0,5 % (масс.) на циркулирующий раствор МЭА. Во избежание накопления в системе нерегенерируе-мых продуктов часть раствора МЭА с низа десорбера 14 насосом 12 направляется на разгонку в колонну 18 (часто вместо колонны ставят периодически действующий перегонный куб), куда подается раствор щелочи. Выделившиеся при разгонке водяные [c.58]

    К вторичным материальным ресурсам процесса пиролиза относят сернисто-щелочные стоки, образующиеся при очистке гнрогаза от сероводорода и диоксида углерода. После соответствующей подготовки их применяют в целлюлозно-бумажной промышленности для сульфатной варки целлюлозы. Опыт утилизации сернисто-щелочных стоков подтвердил целесообразность их подготовки в составе этиленовых производств. Так как солевой состав стоков колеблется в широких пределах вследст-впе разбавления водой в процессе промывки пнрогаза, эти стоки необходимо (рис. 54) упаривать. Для удаления полимерных соединений стоки промывают ароматическими углеводородами, а затем упаривают. [c.157]

    Очищенный углеводородный газ, выходящий с верха абсорбционной колонны 9, проходит газосепаратор 13, затем выводится с установки. Насыщенный раствор МЭА с низа колонны 9 нагревается в теплообменниках 11 я проходит регенерацию в десорбере 14. Регенерированный раствор МЭА с низа десорбера 14 забирается насосом 12, прокачивается через теплообменники И и холодильник 10 и возвращается на абсорбцию в колонну 9. Низ десорбера 14 подогревается за счет тепла кипятильника 17. Выходящие с верха десорбера 14 сероводород и диоксид углерода направляются в десорбер 6. Вместе с десорбированными Н.,5 и СО, после I ступени очистки газы проходят водяной холодильник 15, где конденсируются водяные пары, и попадают в газоводоотделитель 16. С верха газосепаратора выводятся кислые газы (сероводород, диоксид углерода и примеси), [c.58]

    Установка состоит из следующих секций подготовки сырья (компрессор, подогреватель, аппараты для очистки сырья от соединений серы, пароперегреватель и инжекторный смеситель) паровой конверсии (печь паровой конверсии и паровой котел-утилизатор) конверсии оксида углерода в диоксид (реакторы средне- и низкотемпературной конверсии) очистки технологического газа от диоксида углерода (абсорбция горячим водным раствором карбоната калия, регенерация и др.) и секции метаниро-вания. Технологическая схема установки представлена на рис. VI-4. [c.62]

    Процесс щелочной очистки газов является экономичным. Однако при высоких концентрациях в газе сероводорода и диоксида углерода (>0,3 %) перед щелочной очисткой следует использовать очистку раствором моноэтаноламина. Сухой газ и пропан-пропиленовая фракция на промышленных установках ЦГФУ и АГФУ, газы регенерации на установках гидроочистки и пирогаз на установке ЭП-300 предварительно очищаются от сероводорода и частично от диоксида углерода раствором моноэтаноламина, затем подвергаются доочистке щелочью от меркаптанов и диоксида углерода. Расход гидроксида натрия при этом не превышает 0,16 кг на 1000 м газа. [c.115]

    Обычно сч итают, что применительно к очистке природного газа мембранные методы эффективны только для удаления основной массы примесей, а для более тонкой доочистки необходимо применять либо методы с использованием химичесюих абсорбентов, либо адсорбционные [13, 41—43, 61, 63]. Авторы [44] оравнили затраты на двухступенчатый мембранный процесс с абсорбционным диэтаноламиновым (ДЭА) при невыгодных для мембранного способа условиях. Оказалось, что даже при такой низкой концентрации СО2 в газе, как 4% (об.), затраты на эти процессы сравнимы. В табл. 8.11 приведено сравнение затрат (в ценах 1983 г.) на очистку 3350 м ч природного газа, находящегося под давлением 7,7 МПа и содержащего 8% (об.) диоксида углерода. [c.295]

    На рис. 8.19 представлены экспериментальные данные, полученные при очистке высококонцентрированного [80% (об.) СО2] газа и связывающие между собой концентрацию СО2 в пермеате со степенью извлечения диоассида углерода. Из рисунка видно, что в результате одноступенчатой очистки можно получить высококонцентрированный по СО2 газ, при этом велика и степень выделения диоксида углерода. Так, при давлении 3,45 МПа и 90%-м выделении СО2 концентрация его в пермеате равна 95%, что вполне достаточно для использования этого потока для УНП. При этом и содержание диоксида углерода в очищенном газе достигает величины, требуемой для транспортирования углеводородсодержащих газов [40]. [c.298]

    Сбрасываемые нефтеперерабатывающими предприятиями органические вещества под действием микроорганизмов окисляются до диоксида углерода и воды. Проявляется способность самоочищения водоема. При этом расходуется кислород, содержащийся в воде водоема и поступающий туда из атмосферы. Количество кислорода в мг О2 на 1 л (мг/л), которое поглощают в процессе окисления органические вещества за определенный промежуток времени, называется биологической потребностью в кислороде—ВПК. Различают БПК5 (пятидневный) БПК20 (двадцатидневный), БПКполн (полный, когда вещество окисляется полностью). Сточные воды НПЗ до очистки имеют БПКполн 250—450 мг/л, в то время как по санитарным нормам этот показатель в воде водоема должен составлять 3—6 мг/л в зависимости от его категории. При сбросе неочищенных сточных вод концентрация имеющегося в водоеме кислорода может резко снизиться (либо он израсходуется полностью), что вызывает гибель планктона, бентоса, рыб и других организмов, потребляющих растворенный в воде кислород. [c.314]


Смотреть страницы где упоминается термин Диоксид углерода очистка: [c.163]    [c.177]    [c.48]    [c.49]    [c.50]    [c.50]    [c.163]    [c.202]    [c.58]    [c.290]    [c.300]    [c.96]   
Технология карбамида (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Диоксид

Диоксид углерода

Диоксид углерода очистка от примесей

ОЧИСТКА ГАЗА ОТ СЕРОВОДОРОДА, ДИОКСИДА УГЛЕРОДА И СЕРООРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Очистка воздуха и газовых смесей от диоксида углерода

Очистка газов от диоксида углерода

Очистка газов от диоксида углерода водой Лейтес, В. В. Дымов

Очистка газов от диоксида углерода и сернистых соединений органическими растворителями Шахова

Очистка газов от диоксида углерода и сероводорода

Очистка газов от сернистых соединений и диоксида углерода

Очистка газов от сероводорода и диоксида углерода физическими

Очистка диоксида углерода и сернистых соединений

Очистка технологическою газа от диоксида углерода

Расчет очистки газов от диоксида углерод

Скруббер водной очистки газов от диоксида углерода

Хемосорбционные способы очистки газов от сероводорода и диоксида углерода



© 2025 chem21.info Реклама на сайте