Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакционная от присутствия газов

    В зоне эндотермической конверсии сырье реагирует с водяным паром в присутствии катализатора при температуре 330—380° С с образованием конвертированного газа, состоящего из водорода, окиси углерода и углекислого газа. Полученный газ вводят в соседнюю экзотермическую реакционную зону, в которой при температуре 380—480° С в присутствии катализатора образуется газ, обогащенный метаном. Передачу тепла из экзотермической зоны в эндотермическую осуществляют косвенным теплообменом между более горячими газами экзотермической зоны и потоком сырья, поступающего в эндотермическую [c.138]


    Поскольку Q больше Крав , в реакционной смеси имеется больше молекул продуктов, чем должно быть в состоянии равновесия. Создаются более благоприятные условия для самопроизвольного протекания обратной реакции, в результате чего образуется больше ЫНз и уменьшается количество N2 и Н . Следовательно, повышение давления частично компенсируется тем, что реакция смещается в направлении, соответствующем уменьшению суммарного числа молей присутствующих газов. Вообще говоря, повышение давления благоприятствует той из реакций, которая снижает суммарное число молей газов в равновесной системе, и затрудняет протекание реакции, приводящей к возрастанию числа молей газов в системе (рис. 4-4). [c.193]

    Определению мышьяка, кроме сурьмы и германия, образующих подобно окрашенные продукты реакции с диэтилдитиокарбаминатом серебра, мешает сероводород и меркаптаны, реагирующие с диэтилдитиокарбаминатом серебра с образованием соответственно сульфида серебра и других нерастворимых и растворимых окрашенных соединений [680]. Для устранения их мешающего влияния выходящие из реакционной колбы газы предварительно пропускают через слой ваты, пропитанной ацетатом свинца. В присутствии больших количеств сульфидной серы пробу предварительно следует обрабатывать соляной кислотой. [c.70]

    Горячие продукты сгорания соединяются в зоне смешения с идуш им на пиролиз сырьем, предварительно также подогретым до 600° в присутствии водяного пара. В зоне смешения, которой заканчивается камера сгорания, сужением поперечного сечения достигаются очень высокие скорости газового потока. Отсюда смесь поступает в реакционную зону, где пиролиз заканчивается. После выхода газа из этой зоны они охлаждаются до температуры ниже 100° посредством впрыска воды, чтобы стабилизировать продукты пиролиза. [c.98]

    В синтезе при 185° и нормальном давлении (в реакционном объеме имеется лишь незначительное давление, необходимое для преодоления сопротивления при движении газа в аппаратуре) в присутствии упомянутого выше катализаторе образуются преимущественно парафины и олефины со средним числом углеродных атомов (С5 —Се). [c.74]

    Если наряду с указанными выше газами в реакционную трубку вводить 25 мл/мин кислорода, то, несмотря па присутствие тетраэтилсвинца, реакция не протекает. Это убедительно доказывает, что в данном случае имеется цепная реакция, которая, как указывалось выше, подавляется в результате обрыва цепи кислородом. [c.152]


    Существенными недостатками МЭА являются его относительно высокая реакционная способность по отношению к органическим соединениям серы, содержащимся в газе, и высокая коррозионная активность его растворов. Отмечено [И], что реакция МЭА с НгЗ может протекать в присутствии следов кислорода с образованием нерегенерируемого соединения -тиосульфата этаноламина  [c.17]

    В качестве побочных продуктов образуются пропионовый альдегид, ацетальдегид, формальдегид, ацетон, СО, СОа и вода. Катализаторо.м-для этого процесса служит окись меди, нанесенная на непористый носитель (пемзу или карборунд) в количестве 0,5—1,5% (масс.). Позднее был разработан молибдено-кобальтовый катализатор с висмутом и другими добавками. Окисление ведут при 320—350 °С и времени контакта 0,5—1,0 с в присутствии водяного пара, позволяющего улучшить условия выделения акролеина и подавляющего реакции глубокого окисления. Последний эффект достигается также при добавлении в исходную газовую смесь микроколичеств (0,05% от массы пропилена) бромистых или хлористых алкилов. Состав исходной смеси диктуется пределами взрывоопасных концентраций. Соотношение (мольное) пропилен кнслород водяной пар поддерживают равным 4 1 5 или 1 1,5 3, т. е. выше верхнего или ниже нижнего пределов взрываемости. В зависимости от состава газовой смеси процесс ведут с рециркуляцией пропилена или без нее. Реакцию окисления проводят в многотрубчатых контактных аппаратах с солевым теплоносителем. Реакционные газы проходят водную промывку, при этом получают 1,5—2%-ный раствор акролеина в воде,содержащий также побочные продукты реакции — ацетальдегид, пропионовый альдегид й т. д. Акролеин выделяется из водного раствора, ректификацией очищается от ацетальдегида и экстрактивной дистилляцией с водой — от пропионового альдегида. Выход акролеина составляет 67—70% при степени превращения пропилена 50%. [c.207]

    Внутренняя восстановительная область отделена от внешней окислительной реакционной зоной — внутр ним конусом, в котором реально и протекают реакции полного окисления. Реакционная зона окрашена в зеленовато-голубой цвет, вследствие излучения молекулярных полос радикала Сг, кроме того, в ней присутствуют молекулы N2, О2, СО и другие. Их излучение практически перекрывает весь спектр, поэтому внутренняя восстановительная область не может быть использована для аналитических целей. Внешняя область пламени содержит нагретые до высокой температуры продукты полного сгорания углеводородов, газы воздуха, радикалы и вследствие равновесности реакций также некоторые количества СО, Н, О. Она интенсивно излучает в инфракрасной области спектра и мало излучает в видимой и ультрафиолетовой областях, что делает ее удобным источником эмиссии атомных спектров элементов. [c.36]

    Герике [12] и Кекуле [13] нашли, что дифенилсульфон превращается при действии серной кислоты в бензолсульфокислоту и поэтому, подобно сульфированию, образование сульфона является обратимой реакцией. В технике достигают превращения в бензолсульфокислоту выше 80% взятой серной кислоты. Этот метод сульфирования применим и к другим летучим углеводородам, например к толуолу и ксилолам. В случае высококипящих веществ можно удалять образующуюся воду посредством вспомогательной не реагирующей с серной кислотой жидкости [14] (нанример, четыреххлористого углерода) или инертного газа (например, углекислоты). Если сульфируемое вещество, например бензолсульфокислота, нелетуче, реакцию можно провести под уменьшенным давлением [15], с тем чтобы вода отгонялась. Другим методом поддержания концентрации серной кислоты на достаточном уровне для продолжения хода реакции является пропускание в реакционную смесь серного ангидрида, связывающего воду по мере ее образования [16а]. Сульфирование ускоряется в присутствии фтористого бора [16в] и фтористого водорода [16г]. Выделить бензолсульфокислоту из реакционной смеси можно путем непрерывной экстракции ее бензолом [166]. [c.11]

    Каталитический крекинг, как и каталитический риформинг, применяют на так называемых комбинированных нефтеочистительных заводах для сокращения промежуточных дистиллятов и увеличения выхода автомобильного бензина и ненасыщенных газов, которые являются полупродуктами для последующей химической переработки. Сырьем обычно служит тяжелый газойль и даже парафин, разлагающийся при высокой температуре в присутствии кремнеземно-глиноземного катализатора. Большинство современных крупных реакторов каталитического крекинга работает по принципу подвижного (текучего) катализа , при котором сырье и свежая порция катализатора непрерывно подаются в реакционную колонку, откуда одновременно выводится отработанная порция катализатора, направляемая в регенерационный резервуар для реактивации посредством обработки горячим воздухом. Чистый продукт из реакционной колонки разгоняется в первичном сепараторе на легкие фракции, промежуточные дистилляты и тяжелые фракции. Верхние погоны (смесь жидких метана, этана и каталитического бензина) отбираются и сепарируются в абсорбционной колонке с помощью легкой абсорбционной нефти на неконденсированный газ (метан, этилен и этан) и на абсорбированную фракцию, состоящую из СНГ и бензина. Насыщенный абсорбент ( жирная нефть) десорбируется от содержащихся в нем легких фракций, которые сепарируются на бензиновую фракцию и СНГ в голове колонки-дебутанизатора. [c.21]


    В процессе термообработки формируется высокореакционноспособная поверхность металла, которая может взаимодействовать с элементарными газами, присутствующими в окружающей атмосфере. В зависимости от реакционной способности металлов или сплавов, температуры термообработки и требуемой степени превращений выбирается определенная атмосфера, в которой должны присутствовать или отсутствовать те или иные газовые компоненты. Вот почему так важен контроль состава атмосферы в рабочем пространстве нагревательной печи. Для создания требуемых атмосфер щироко применяют СНГ. [c.318]

    Кинетические закономерности, полученные для систем такого рода, применимы также при рассмотрении реакций, протекающих в ламинарном потоке. Обычно в этом случае струя газа или жидкости проходит через реакционный сосуд, в котором создаются условия, необходимые для протекания химической реакции (повышенная температура, присутствие необходимого катализатора, освещение и т. д., в зависимости от природы осуществляемой реакции). [c.377]

    Принцип Ле Шателье гласит, что если на систему в состоянии равновесия оказывается внешнее воздействие, положение равновесия (т.е. количественное соотношение между реагентами и продуктами) смещается в таком направлении, чтобы свести к минимуму влияние этого воздействия. Это означает, что для эндотермической реакции (идущей с поглощением тепла) Кравн увеличивается при повышении температуры, поскольку дальнейшее продвижение реакции приводит к частично.му поглощению подводимого тепла. По той же причине для экзотермической реакции (идущей с выделением тепла) охлаждение приводит к увеличению Кра . Хотя константа равновесия Кр в,, не зависит от давления и изменение суммарного давления в реакционной системе непосредственно не изменяет ее величины, повышение давления может привести к смещению равновесия в направлении, при котором уменьшается суммарное число молей присутствующих газов. [c.198]

    Пробу (1—40 мкг ЗЬ) растворяют в НКОд. К раствору прибавляют избыток конц. НС1 и нагревают до прекращения выделения окислов азота. Остаток переносят в реакционную колбу емкостью 25 мл, прибавляют 5 мл 10%-ного раствора К1, 4 капли 10%-ного раствора Зпаа-ЗНаО в НС1 (1 1), 10 мл конц. НС1 и 3 г гранул Ти. Колбу тотчас же соединяют с насадкой с пористой стеклянной перегородкой или пробкой из стеклянной ваты. Над перегородкой имеется слой ваты, пропитанной РЬ(СНзСОО)2 для поглощения НзЗ. Выделяющиеся из реакционной колбы газы, пройдя этот слой ваты, через трубку (й = 2 -т- 3 мм) поступают в цилиндр или пробирку с 5 жл хлороформного раствора, содержащего 0,25% диэтилдитиокарбамината серебра и 1% этаноламина. Через 30 мин. измеряют оптическую плотность поглотительного раствора при 525 нм и по аналогично построенному калибровочному графику находят содержание ЗЬ. Метод позволяет определять также ЗЬ и Аз при их совместном присутствии. Для этого в одной аликвотной части раствора проводят анализ, как указано выше, и измеряют оптическую плотность, соответствующую суммарному содержанию ЗЬ и Аз. Из другой аликвотной части раствора сначала удаляют Аз в виде АзС1д упариванием раствора при 130° Сив остатке определяют 8Ь. Метод позволяет определять ЗЬ в ряде материалов с ее содержанием до 1.10 %.  [c.58]

    Этот продукт может быть получен на основе этилена или-ацетилена. Процесс образования винилацетата происходит в паровой фазе по реакции оксиацетилирования из этилена, уксусной кислоты и кислорода при температуре 175—200°С и-давлении (5—10)-Ю Па в присутствии палладиевого катализатора на носителе. Реакционная смесь после реактора частично конденсируется и разделяется на жидкую и газовую фазы. Газ-рециркулят проходит через скрубберы, в которых удаляются винилацетат и диоксид углерода. Жидкий конденсат подается в систему ректификационных колонн, где легкие остатки, главным образом ацетальдегид, вода, а также полимеры, отделяются от очищенного винилацетата. Уксусная кислота возвращается в реактор. Выход составляет примерно 91% винилацетата, 8% диоксида углерода и 1% побочных продуктов (10 наименований). При этом этилен и уксусная кислота используются более чем на 99% (И9]. [c.279]

    С другой стороны, Хоуэс в 1946 г. указывал, что основным сырьем гидроформинг-процесса является нефтяное сырье с температурой выкипания 90—200°, что процесс ведется в присутствии окиси молибдена, нанесенной на окись алюминия, при температуре 480—540° и давлении водорода 7—50 ат. Отходящие из реакционной камеры газы разделяются на жидкий конденсат и газовую часть, причем газы вновь поступают вместе со свежим сырьем в реакционную камеру. Повышение давления водорода ведет к уменьшению коксообразования, однако рабочий цикл и в этом случае длится только от 6 до 12 час., после чего следует регенерация. По словам Хоуэса катализат содержит как тот толуол, который находился в исходной фракции, так и толуол, образовавшийся дегидрогенизацией метилциклогексана. Свою статью Хоуэс заканчивает следующими словами  [c.254]

    В Германии также пытались получать формальдегид окислением метана, содержащегося в газах гидрирования ил и в ко ксовых газах. Были разработаны два процесса процесс фир-мы Гутекофнунгсхютте [16] и процесс фирмы Хиберниа [17]. По первому процессу, по-видимому, продолжают еще получать формальдегид с весьма удовлетворительным результатом. На этой установке метан окисляется при высокой температуре и атмосферном давлении в присутствии небольших количеств двуокиси азота как катализатора. Метан и воздух в отношении 1 3,7 добавляют порознь к циркулирующему в системе метану после его выхода из водяного скруббера, работающего под давлением. На каждые 9 объемов циркулирующего метана вводят 1 объем свежей метано-воздушной смеси. Газовая смесь подогревается до 400° в теплообменнике, через который проходят выходящие из печи газы. Окислы аэота прибавляют в количестве 0,08% от свежей метано-воздушной смеси их получают непосредственно перед вводом в реакционную зону сжиганием аммиака с воздухом над платиновым катализатором. [c.438]

    Появилось сообщение о прямом получении ме7 илового спирта из метана Процесс — такой же как и при получении формальдегида (см. гл. 38), только через реакционную трубку газы пропускаются с меньшей скоростью. Присутствие водорода и 20—30 паров алкоголя в газовой смеси приводит к реакции, которая представляется прямым окислением метана углекисльгм газом  [c.1063]

    Так как реакция гидрофторпрования двуокиси урана обратима, причем вероятность протекания обратной реакции увеличивается с нагреванием, иовышение температуры процесса целесообразно только в случае,, если в реакционной смеси газов концентрация фтористого водорода высока по отношению к содержанию паров воды. В присутствии больнюго количества водяных паров (на выходе из реактора в противоточном процессе) необходимо поддерживать сравнительно низкую температуру. Это условие можно выполнить, если процесс гидрофторирования разделяется па несколько стадий. В соответствии с данными о равновесной концентрации фтористого водорода в смеси с водяными парами, гидрофторирование двуокиси выгодно проводить при возмоншо более низких температурах однако при этом заметно снижается скорость процесса на практике гидрофторирование ведут при 400—600° С. [c.254]

    Особый технический интерес по-прежнему представляет окисление метана в формальдегид. В этой области получили развитие два промышленных процесса [67]. Один из них — фирмы Гутенофнупгсхютте — основывается на окислении метана при атмосферном давлении и высокой температуре в присутствии небольших количеств двуокиси азота как катализатора. ]Иетан и воздух в соотношении 1 3,7 добавляются к циркулирующему метану после его промывки водой под давлепием. Иа 9 объемных частей циркулирующего метапа дают 1 объемпу]о часть свежей метапо-воздушной смеси. К газовой смеси добавляют 0,08% окислов азота, полученных окис-лепием аммиака. Реакционную смесь нагревают до 600, после чего из нее промывкой водой извлекают формальдегид. Освобождениые от формальдегида газы из абсорбера возвращаются в процесс. [c.162]

    Если в процессе синтеза газы и пары долго находятся в реакционном объеме, метанообразование усиливается. Это явление можно объяснить тем, что в этом случае значительное количество водорода все же подвергается хемосорбции, что и приводит к деструктивному гидрированию углеродных цепей. Эксперименты Краксфорда хорошо согласуются с тем фактом, что при воздействии водорода на парафиновые углеводороды в присутствии, катализатора Фишера — Тропша уже при 200° проходят гидрокрекинг и одновременно превращение параводорода. Это показывает наличие условий для хемосорбции водорода. [c.87]

    Скорость абсорбции увеличивается в присутствии различных солей, причем наиболее эффективными катализаторами являются сернокислая и хлористая соли закиси меди. В опытах при низких температурах катализаторы брались в количестве 1—5%. В присутствии 5% закиси меди этилен быстро абсорбируется 95%-ной серной кислотой при температуре 40°, образуя этилсерную кислоту с выходом 94%. В случае применения ртутного катализатора и соли закиси меди абсорбция происходит даже при более низких температурах. Эффективным катализатором является также сернокислая соль двухвалентной меди [180а]. В общей схеме [1806] удаления этилена из светильного газа путем абсорбции этилена кислотой крепостью 66° Вё в качестве катализатора предложено употреблять смесь 1% ртути с ванадиевой, урановой или молибденовой кислотами. В присутствии пенообразующего вещества каталитическое действие оказывают также коллоидное серебро и серебряные соединения [181]. Применяя катализаторы, можно вести абсорбцию при температуре реакционной смеси не выше 35° и таким образом избежать образования изэтионовой кислоты. Описана полупроизводственная абсорбционная установка [182], работающая с применением медного катализатора. Позднее [183] предложены некоторые другие соединения, ускоряющие процесс абсорбции. Катализаторы увеличивают только скорость абсорбции, но не влияют на ее полноту [184]. [c.35]

    Полученная таким способом газовая смесь поступает в реакционную трубчатую печь, в которой происходит образование формальдегида (рис. 82). Газ, отдавший свое тепло в теплообменнике, отмывается водой от формальдегида и после того, как будет отобрана часть метана для обогрева печи, возвращается в процесс. Водный раствор формальдегида (5—10% СН2О) нейтрализуют, чтобы связать муравьиную кислоту, присутствующую в небольших количествах, и затем перегоняют под давлением. Получается 34%-ный раствор формальдегида, содержащий 3% метанола. Иэ 203,3 нм метана получают в час 26,4 кг 100%-ного формальдегида, т. е. 9, 7% от теоретического. Этот процесс был исследован затем и в США [18]. [c.439]

    Открытие нижнего предела самовоспламенения смеси фосфора с кислородом [Харитон, Вальта, Семенов (1926)] послужило толчком к изучению разветвленных цепных реакций. Указанные авторы обнаружили, что идущее весьма интенсивно горение паров фосфора в кислороде полностью прекращается при понижении парциального давления кислорода ниже некоторого предельного значения, равного 0,05 мм рт. ст. (нижнее критическое давление самовоспламенения). Достаточно было ничтожного повышения давления (на 0,01 мм рт. ст.), чтобы снова произошла вспышка. При давлении на 0,01 мм рт. ст. ниже критического смесь могла существовать сколь угодно долго. Подробное исследование этого явления показало, что критическое парциальное давление кислорода зависит от давления паров фосфора, от диаметра сосуда и от присутствия инертного газа. Было показано, что разбавление реакционной смеси инертным газом снижает критическое давление. [c.213]

    Пш1 введении в равновесную систему (при р = onst) инертного газа концентрации реагентов (парциальные давления) уменьшаются. Если течение процесса связано с уменьшением объема, то равновесие сместится влево (например, при синтезе аммиака). Наоборот, для реакций, которые сопровождаются возрастанием объема реакционной смеси, разбавление инертным газом вызывает увеличение полноты реакции. Если же ЛУ = О, то система будет нечувствительна к присутствию инертного газа. [c.202]

    Для получения присадки MA K алкилсалициловые кислоты в аппарате 15 разбавляют маслом М-6 и обрабатывают избыточным количеством оксида кальция при 80°С в присутствии промотора — метилового спирта при этом через реакционную смесь пропускают углекислый газ. Полученную присадку (в виде раствора в ксилоле) отделяют от механических примесей и отгоняют растворитель. Присадки АСК и MA K выпускаются соответственно по ТУ 38-101458—74 и ОСТ 38-01100—76. [c.231]

    Для ссвместного синтеза этих веществ используют два способа. В первом случае процесс осуществляют в барботажной колонне в среде зтилацетата при 50—70°С и 0,4 МПа. Окисление ведут воздух( м (а не кислородом) в присутствии смешанных катализаторов (например, ацетаты меди и кобальта в отношении 10 1 или 2 1). Растворитель, ацетальдегид и катализаторный раствор непрерывно подают в окислительную колонну и барботируют воздух через реакционную смесь. Пары, уходящие с воздухом, конденси-руьэтся в обратном холодильнике воду отделяют, а этилацетат возвращают в колонну. Летучий ацетальдегид поглощают из газа водой, регенерируя его при последующей отгонке. Реакционную массу ььшодят из окислительной колонны и направляют на разделение, отгоняя в первую очередь смесь растворителя с водой и непревращенным ацетальдегидом. Затем в других колоннах последовательно отгоняют уксусную кислоту, уксусный ангидрид и катализаторный раствор, который возвращают на стадию окисления. [c.407]

    Эта схема подтверждается присутствием н-бутиленов в реакционных газах и сходством состава продуктов, полученных в случае этилена и н-бутиленов в присутствии цеолита СаМеУ (табл. 3). Активность проявляли катионы никеля, хрома и кобальта. Результаты, данные в табл. 3 и 4, получены с использованием никеля. [c.85]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    Часть углерода сгорает и воздухе периодически при обработке ванны, с преимущественным образованием окиси углерода, входящего в состав анодного газа. Повышению содержания в анодных газах окиси углерода также способствует реакция (2), особенно энергично протекающая при высоких температурах электролиза. Расход анодного газа, выделяющегося из-под корки электролита, составляет, в зависимости от производительности электролизера, от 12 до 17 м /ч (при нормальных условиях) или 2 м на 1 кг расхода углерода в 1 ч. Состав анодного газа зависит от температуры процесса электролиза, реакционной способности анода, присутствия в нем различных примесей и др. Чем ниже температура процесса и реакционная способность анода, тем больше в анодном газе двуокиси углерода и тем меньше удельный расход анода. Действительно [92], с повышением концентрации двуокиси углерода в анодном газе с 44,0 (верхний токоподвод) до 66% (боковой токонодвод) расход анодной массы снижается соответственно с 590 до 535 кг. При отсосе анодный газ разбавляется воздухом, фторсодержащими газами, в результате чего объем отсасываемых газов возрастает на несколько порядков, составляя 5000— [c.28]

    Рассматриваемый процесс, как и другие каталитические реакции, является равновесньп . Изопропиловый спирт присутствует в смеси серной кислоты с изопропилсерной кислотой еще дс разбавления реакционной смеси водой, и его можно удалить продувкой другим газом. Удалению изопропилового спирта способствует то, что в реакционную смесь добавляют воду, чтобы возместить ту ее часть, которая израсходована на гидратацию пропилена. Только в очень немногих каталитических реакциях удается так легко обнаружить промежуточный продукт и следить за равновесным состо шием. [c.340]


Смотреть страницы где упоминается термин Реакционная от присутствия газов: [c.281]    [c.108]    [c.213]    [c.37]    [c.125]    [c.347]    [c.220]    [c.220]    [c.85]    [c.91]    [c.156]    [c.153]    [c.74]    [c.46]    [c.87]    [c.10]    [c.66]    [c.362]    [c.567]   
Технология минеральных солей (1949) -- [ c.100 ]




ПОИСК







© 2025 chem21.info Реклама на сайте