Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокоэффективная жидкостная применение

    Период, наступивший в аналитической химии органических соединений с начала 60-х годов, без преувеличения может быть назван эпохой хроматографии. Один из вариантов этого метода — колоночная жидкостная хроматография — был создан русским ботаником М. С. Цветом в начале века [31]. На протяжении последующих 40 лет хроматография не находила широкого практического применения. Однако в этот период были выполнены работы, имевшие принципиальное значение и заложившие основы тонкослойной [9] и распределительной хроматографии [288]. Лишь после 1950 г. приходит время признания хроматографии, созревания ее как эффективного метода разделения сложных смесей соединений и их анализа. В 1952 г. были выполнены первые работы по газожидкостной хроматографии [216], а вскоре освоен выпуск газовых хроматографов, и в течение последующих 20 лет газохроматографический анализ стал основным методом исследования смесей летучих термически устойчивых соединений. Но большинство органических веществ не обладает необходимой для газовой хроматографии летучестью и термостойкостью, и хроматографировать их можно только в более мягких условиях, характерных для жидкостной колоночной хроматографии. Скорость же и эффективности разделения, а также чувствительность анализа по этому методу долго оставались неудовлетворительными. И лишь в 1965— 1975 гг. были в принципе решены основные научные и технологические проблемы, сдерживавшие развитие метода. Последовавший затем прогресс был столь поразителен, что современная инструментальная разновидность метода получила самостоятельное наименование — высокоэффективная жидкостная хроматография.  [c.7]


    ПРИМЕНЕНИЕ МЕТОДОВ ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ ДЛЯ ТОНКОГО ФРАКЦИОНИРОВАНИЯ ЦЕЛЛЮЛОЛИТИЧЕСКИХ ФЕРМЕНТОВ [c.127]

    Полноценный анализ неперегоняющихся или особо высококипящих компонентов нефти стал возможным благодаря комбинации масс-спектрометра с высокоэффективным жидкостным хроматографом, сочетанию в одном приборе двух методов, что дает больше информации о структуре нефтяных фракций нежели их раздельное применение [218]. [c.138]

    Рассмотрены электроаналитические методы, наиболее перспективные для анализа объектов окружающей среды и биологических материалов вольтамперометрия в прямом и инверсионном вариантах, потенциометрия с ионоселективными электродами, кулонометрия и кондуктометрия. Приведены основные характеристики методов, условия их оптимального применения, эксплуатационные и экономические показатели. Описаны автоматические анализаторы и средства мониторинга окружающей среды. Показаны возможности электрохимических детекторов в проточных аналитических системах, в том числе в высокоэффективной жидкостной хроматографии. [c.127]

    Применение современной техники разделения, особенно высокоэффективной жидкостной хроматографии, позволяет относительно хорошо очистить пептиды, содержащие 3—10 аминокислотных остатков. Для построения длинных полипептидов и небольших белковых молекул подходит только классический метод конденсации фрагментов. Синтез фрагментов производят либо в растворе путем ступенчатого удлинения пептидной цепи, либо [c.226]

    Книга представляет собой практическое руководство по капиллярному электрофорезу - новому методу анализа, обладающему высокой разрешающей способностью и сочетающему преимущества электрофоретических методов разделения с возможностью автоматизации анализа и простотой количественного расчета, характерного для высокоэффективной жидкостной хроматографии. Быстрота анализа и эффективность разделения в сочетании с широкой областью применения делают капиллярный электрофорез одним из наиболее высокоэффективных аналитических методов. [c.1]

    Приступая к использованию того или иного аналитического метода для решения конкретной задачи необходимо уяснить, можно ли в принципе достичь избранным путем желаемой цели. В противном случае необоснованное применение метода может привести к принятию неверных решений в исследованиях и производстве. Результатом, помимо материальных и других потерь, явится компрометация аналитика либо даже метода в целом. Рассмотрим в связи с этим сильные и слабые стороны высокоэффективной жидкостной хроматографии. При их обсуждении будем исходить из ситуаций, характерных для различных этапов создания новых лекарственных средств, постадийного контроля производства, контроля качества продукции. [c.243]


    Этот недавно введенный метод хроматографии вновь выдвинул на передний край хроматографию на колонках — самую старую форму аналитического искусства. Основное достижение, благодаря которому стало возможным применение нового метода, — это технология получения частиц, устойчивых к высокому давлению и имеющих одинаковый диаметр меиее 50 мкм. Более ранние типы частиц обычно имеют твердый центр, например из стекла, и тонкий пористый наружный слой, например из кремнезема благодаря небольшому размеру и большой площади поверхности этих частиц обеспечивалась высокая эффективность адсорбционной хроматографии. Если частицы покрыты подходящей неподвижной фазой, высокоэффективную жидкостную хроматографию можно использовать как метод распределения. [c.419]

    Метод высокоэффективной жидкостной хроматографии применен для исследования устойчивости соединения включения метилурацила с Р-циклодекстрином [57]. [c.600]

    Авторы надеются, что после многолетнего перерыва в России возобновится издание отечественных пособий в области применения метода высокоэффективной жидкостной хроматографии и что в следующем издании примут участие большее количество российских хроматографистов - пусть даже при помощи издательства провинциального университета. [c.7]

    Полезное введение в методику моделирования дано в монографии [115]. Интересные примеры применения различных методов моделирования публикуются также в литературе по аналитической химии. В частности, в гл. 4 монографии [114] рассматривается использование в исследовании химической кинетики очень популярного и хорошо известного метода Монте-Карло. Авторы публикаций, в которых обсуждаются достоинства метода моделирования, как правило, сами пользуются им. Так, авторы статьи [117] продемонстрировали роль компьютерного моделирования в исследованиях факторов, определяющих оптимальный режим работы высокоэффективного жидкостного хроматографа, предназначенного для препаративного разделения в данном случае при помощи компьютерного моделирования изучалось влияние на элюирование изменения числа теоретических тарелок в хроматографической колонке. Авторы статей [118— 120] интенсивно изучали применение моделирования в дифференциальной импульсной полярографии как выяснилось, в результате моделирования можно предсказать форму полярографического пика и его положение как функции экспериментальных переменных, таких, как высота и длительность импульса и время спада. В этом примере метод моделирования позволяет аналитику осуществить выбор и оптимизацию экспериментальных условий без проведения длительных эмпирических исследований. [c.392]

    Наиболее целесообразно проводить идентификацию выделенных добавок по их УФ-, ИК- и масс-спектрам, а также с использованием пиролитической газовой хроматографии [66—68]. Эффективность физических методов возрастает при их сочетании например, стабилизаторы можно идентифицировать методом высокоэффективной жидкостной хроматографии с последовательным применением ультрафиолетового (280 нм) и масс-спектрометрического (с химической ионизацией) детектирования при содержании этих соединений в полимерной матрице порядка 10 г [66]. [c.62]

    Применению твердых сцинтилляторов в проточных кюветах посвящены обзоры Шрама [15], а также Мак-Гиннеса и Каллена [16]. В гл. 6 проводится подробное обсуждение метода и даются ссылки на его применение в высокоэффективной жидкостной хроматографии. [c.30]

    Автомобили с дизельными двигателями становятся все более популярными, что повышает вероятность появления еще одного источника загрязнения. Конгресс США поручил Управлению по охране окружающей среды изучить особенности выхлопных газов дизелей и их воздействие на здоровье человека ( Закон о чистоте воздуха , август 1977 г.). Результаты этого исследования легли в основу требований к выхлопным газам дизелей, обязательных для всех моделей автомобилей, выпускаемых с 1982 г. Соответственно исследователи интенсифицировали усилия, направленные на разработку методов, позволяющих охарактеризовать выхлопные газы дизелей [10—14]. Многокомпо-нентность образцов и необходимость их возможно более полной характеристики явились причиной использования таких чрезвычайно сложных аналитических систем, как газо-жидкостная хроматография — масс-спектрометрия (ГЖХ—-МС), газо-жидкостная хроматография с пламенно-ионизационным детектированием (ГЖХ — ПИД), высокоэффективная жидкостная хроматография (ВЭЖХ), газо-жидкостная хроматография — фурье-спектроскопия в инфракрасной области (ГЖХ — ИК—ФС). Для фракций, обладавших мутагенными свойствами, применялись также биологические методы анализа. Ряд компонентов удалось идентифицировать только благодаря применению взаимно дополняющих методов анализа, например ГЖХ —МС, ГЖХ —ПИД и ГЖХ —ИК —ФС. Методом ГЖХ —МС можно легко определить молекулярную массу компонента и получить данные о его структуре, но этот метод менее информативен при идентификации функциональных групп напротив, такая информация легко может быть получена методом ГЖХ — ИК — ФС. В то же время последний метод не позволяет различать гомологичные соединения [15]. Этот пример наглядно демонстрирует необходимость применения в ряде случаев наиболее совершенных и информативных инструментальных методов анализа, как бы дороги они ни были. Стоимость работ должна соответствовать важности объекта изучения. В частности, если объект связан с контролем загрязнения окружающей среды, которое может иметь очень серьезные экологические последствия, то при- [c.23]


    Для выделения О. из сложных смесей используют хроматографич. методы, причем разделение О. по степени полимеризации достигается с помощью гель-хро.матографии, а более тонкое разделение изомеров вйполняют с применением высокоэффективной жидкостной хро. атографии. Низшие О. в виде летучих производных (метиловых, триметилсилиловых эфиров или ацетатов) удается разделять с помощью ГЖХ. [c.379]

    Одна из основных тенденций в развитии электрохимического анализа - миниатюризация электрохимических ячеек и электродов. Во многом это связано со все более широким применением электрохимических детекторов в проточных методах анализа, в частности, в высокоэффективной жидкостной хроматографии и капиллярном зонном электрофорезе, а также с внедрением в практику измерительных устройств на основе ультрамикроэлектродов (УМЭ). Указанные электроды, благодаря наличию у них комплекса уникальных свойств, представляют интерес не только для специалистов в области электрохимического анализа, но и для более широкого круга исследователей. [c.94]

    Шатц В.Д., Сахартова О.В. Высокоэффективная жидкостная хроматография. Основы теории. Методология. Применение в лекарственной химии. Рига Зинатне, 1988. 220 с. [c.39]

    Ш а т ц В. Д., С а X а р т о в а О. В. Высокоэффективная жидкостная хроматография Основы теории. Методология. Применение в лекарственной химии. — Рига Зинатне. — 1988. — 390 с. — 18ВМ 5-7966-0035-4. [c.4]

    Более редко встречающиеся стероиды, такие, как азастероиды [119] и различные тиостероиды [120], не представляют особых затруднений при хроматографировании их различными методами. Создается впечатление, что до настоящего времени не возникало необходимости в создании для их анализа высокоэффективной жидкостной колоночной хроматографии. Возможно, что по мере совершенствования этого метода он найдет применение во всех областях исследования стероидов. [c.245]

    Применение стандартов в высокоэффективной жидкостной хроматографии. //Фармаком.—19Й.—№3 —С.12—22. [c.519]

    Эта книга вышла в свет в период, когда многие исследователи-аналитики рассматривали тонкослойную хроматографию (ТСХ) как один из второстепенных методов. Другая довольно многочисленная группа ученых занималась проблемами высокоэффективной жидкостной колоночной хроматографии (ВЭЖКХ), называемой иногда не совсем правильно жидкостной хроматографией высокого давления. В этом методе колонки для разделения редко используются при оптимальных условиях. Они характеризуются эффективностью, значительно превышающей 1000 теоретических тарелок. Применение ВЭКЖХ подчас ограничено необратимой адсорбцией компонентов анализируемых смесей. Большинство недостатков этого метода можно устранить с помощью ТСХ. [c.9]

    В настоящей главе описано практическое применение некоторых основных формул при выборе оптимальных условий для серийных анализов методом высокоэффективной тонкослойной хроматографии (ВЭТСХ). Данные ВЭТСХ можно использовать в высокоэффективной жидкостной хроматографии (ВЭЖХ). Такое изложение не охватывает все теоретические вопросы ТСХ, но все же оно шире работы Гейсса [1]. [c.17]

    В высокоэффективной жидкостной хроматографии (ВЭЖХ) наряду с широким применением оптических детекторов за последние 10—15 лет наметился значительный прогресс в развитии электрохимического метода детектирования. Доказательством этого является увеличение числа публикуемых работ по разработке и применению электрохимических детекторов (ЭХД) и, главным образом, увеличение выпуска аппаратуры,,пригодной для практического использования [56, 59]. [c.277]

    Термолиюовую спектроскопию применяют для высокочувствительного определения окрашенных соединений, а также для определения термооптических характеристик растворителей. Кроме того, термолинзовый детектор используют в высокоэффективной жидкостной (колоночной) хроматографии, проточно-инжекционном анализе. Важной областью применения термолннзовой спектроскопии является дистанционный анализ газовых сред (нижние границы определяемых содержаний таких газов как N 2, N0, ЗОз, паров йода составляют 10 —10 % об.). Фототер-мическую рефрактометрию применяют для решения аналогичных задач. Кроме того, вследствие высокого пространственного разрешения фото-термическую рефрактометрию используют в капиллярной хроматографии, методах капиллярного зонного электрофореза и методах локального анализа жидкостей. [c.338]

    Интересное применение порта RS-232 для компьютера описано в работе [24]. Здесь речь идет об управляемом микрокомпьютером интерфейсе между высокоэффективным жидкостным хроматографом (HPL ) и ИК-спектрометром с диффузным отражением (FT-IR). Микрокомпьютер KIM-1, построенный на базе микросхемы 6502 [25], был связан с хроматографом интерфейсом HPL /FT-IR и системой сбора данных от спектрометра с помощью специальной микросхемы ввода/вывода VIA (многофункциональный интерфейсный адаптер). Все программное обеспечение для KIM-1 было записано в кодах процессора 6502 с помощью кросс-ассемблера и эммулятора 6502 на большой ЭВМ IBM 370/158. При помощи порта RS-232 была осуществлена загрузка программ из этой системы прямо в микрокомпьютер KIM через конвертер токовой петли 20 мА интерфейса [c.265]

    Для автоматизированной высокоэффективной жидкостной хроматографии с обращенными фазами в работе [38] изучали применение в качестве неподвижной фазы амберлита ЬА-1 [ -до-деканаль(триалкилметил)амин], нанесенного на различные носители диатомитовую землю анакром АВ (Апакгот), трехзвенный полимер, в основном состоящий из трифторэтилена (Р1а-зкоп СТРЕ-2300), и сферические шарики окиси кремния зипакс, [c.221]

    В работе [38], посвященной анализу стероидных гормонов с помощью высокоэффективной жидкостной хроматографии, авторы исследовали несколько видов носителей для фиксации амберлита ЬА-1 [н-додеканаль(триалкилметил)амин] в качестве неподвижной фазы. Эти же авторы приводят полезные сведения о разделении андрогенов с применением в качестве носителя фторопласта Р1азкоп СТРЕ-2300, представляющего собой трехзвенный полимер, в основном состоящий из трифторэтилена (рис. 28.1). [c.229]

    До последнего времени широкое применение находила классическая колоночная хроматография на силикагеле или окиси алюминия. Недавно в химии бора стали использовать сухую колоночную хроматографию. Основными преимуществами этого метода являются хорошее качество и высокая скорость разделения, незначительная степень деструкции твердой фазы под действием водорода (вследствие гидролиза), а также возможность быстрого подбора условий разделения методом ТСХ. Хорошие результаты были получены не только при разделении окрашенных соединений (металлокарбораны, имеющие структуру типа сэндвича), но также и при разделении соединений, поглощающих в УФ-области спектра, при условии проведения хроматографии в кварцевых колонках или в колонках из полиэтилена или полипропилена. Для разделения борорганических соединений пытались использовать гель-проникающую хроматографию [1] и высокоэффективную жидкостную хроматографию [2], однако эти методы требуют дальнейшего усовершенствования. [c.167]

    При разработке технологий получения препарата Бромезида, в качестве критериев, определяющих диагностическое качество этого РФП, были выбраны скорость образования и выход комплекса " Тс-бромезида. С целью их определения были разработаны два метода количественного анализа радиохимического состава растворов с применением высокоэффективной жидкостной хроматографии (ВЭЖХ) и электрофореза (ЭФ) [53]. [c.410]

    Еще одно важное достижение семидесятых годов — применение химически привитых фаз. Это пористые силикагели, поверхность которых покрыта ковалентно связанными органическими молекулами, содержащими кремний (органосил анами). Особенно важное значение приобрели силикагели с углеводородными прививками типа н-октильных или н-октадецильных радикалов. Они делают поверхность силикагеля похожей на органический растворитель. В качестве подвижной жидкой фазы в сочетании с такими привитыми неподвижными фазами обычно применяют смесь органического растворителя с водой. При помощи такой обращеннофазовой хроматографии в настоящее время осуществляют больще половины всех экспериментов в высокоэффективной жидкостной хроматографии. Этот метод особенно хорошо подходит для разделения соединений, хотя бы отчасти растворимых в воде (лекарственные средства, биохимические препараты, ароматические соединения и т.п.). [c.242]

    Примером применения адсорбционной хроматографии является извлечение кофеина из кофе (или из чая) и хроматографическая) очистка сырого кофеина на оксиде алюминия (нейтральном) [ onnor R. О. J. hem. Edu ., 1965, 42, 493]. Высокоэффективная жидкостная хроматография позволяет автоматизировать аналитическое разделение веществ методом адсорбционной хроматографии (см. разд. А,2.5.4.2). [c.106]

    В большинстве случаев разделение, достигаемое посредством аналитической ТСХ, можно перевести на микро- или полу-микропрепаративный уровень. Препаративное разделение на тонких слоях чаще всего проводят методами адсорбционной и распределительной хроматографии, тогда как препаративное разделение методом ионообменной или колоночной хроматографии проводится только на колонках. Помимо препаративной тех существуют и другие методы препаративного разделения (например, классическая жидкостная хроматография и особенно высокоэффективная жидкостная хроматография, или хроматография при высоком давлении, см. гл. 4), которые в ряде случаев могут оказаться более эффективными. Методом сухой колоночной хроматографии (СКХ) можно проводить препаративное разделение в таких же условиях, которые применяются при разделении методом ТСХ [36]. Поэтому рекомендуется прежде всего проанализировать достоинства и недостатки различных типов и методов хроматографии и оценить целесообразность их применения для разделения конкретных соединений (устойчивых или неустойчивых, с близкими или значительно различающимися величинами Rf). Выбор метода зависит также от того, какие количества соединений и как быстро необходимо получить. [c.121]

    В течение последних 10—15 лет достигнуты большие успехи в области аналитического разделения и анализа физиологически активных веществ с применением методов жидкостной хро.матогра-фии. Высокоэффективная жидкостная хроматография [1—5] приблизилась по эффективности к газожидкостной хроматографии, что позволило разработать методы разделения и анализа ФАВ, большая часть которых не может переходить в газовую фазу без разложения. Основа успехов этих методов состояла в использовании малых размеров гранул сорбентов или носителей, что позволило резко увеличить скорость гетерогенного массообмена и привело к разработке хроматографических процессов с мини.мальны. размыванием зон веществ и получением хроматограмм с разделением весь.ма близких по свойствам компонентов. [c.12]

    В распределительной хроматографии неподвижная фаза должна быть нерастворима в подвижной фазе и распределена в виде тонкой пленки на носителе. Для создания покрытия в виде тонкой пленки и исключения уноса фазы она может быть химически связана с поверхностью твердого носителя. Адсорбенты, применяемые в твердо-жидвостной хроматографии, для исключения необратимой адсорбции и образования хвостов у пиков должны обладать однородной поверхностью. Ионообменные смолы, применяемые для заполнения колонок в ионообменной хроматографии, должны быть достаточно структурированными для исключения сжатия при высоких давлениях. Для работы при высоких давлениях в эксклюзионной хроматографии используют жесткие гели либо стеклянные шарики. Требования к разделяющей способности и скорости разделения аналогичны тем, что и в высокоэффективной жидкостной хроматографии. Высокая производительность колонки достигается при увеличении количества нанесенной неподвижной жидкой фазы и поверхности носителя. В препаративной хроматографии часто используют пористые гели из-за их большой емкости, однако высокая сжимаемость ограничивает их применение вследствие возможных перепадов давления на колонке. [c.55]


Смотреть страницы где упоминается термин Высокоэффективная жидкостная применение: [c.134]    [c.238]    [c.54]    [c.6]    [c.237]    [c.245]    [c.15]    [c.61]    [c.202]   
Аналитическая химия Том 2 (2004) -- [ c.280 ]




ПОИСК





Смотрите так же термины и статьи:

Высокоэффективная жидкостная

Применение методов высокоэффективной жидкостной хроматографии для тонкого фракционирования целлюлолитических ферментов



© 2024 chem21.info Реклама на сайте