Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластические массы механические свойства

    Механические свойства полимеров зависят не только от их химической природы, степени сшивки пространственной сетки, но и от ориентации макромолекул и надмолекулярных структур, пластификации, степени наполнения и др. Ориентирование цепей макромолекул и надмолекулярных структур приводит к анизотропии свойств полимера. Обнаруживается резкое увеличение его прочности Б направлении ориентации. Этот факт широко используется в процессах прядения волокон и получения пластических масс. Ориентирование макромолекул способствует кристаллизации и увеличению хрупкой прочности полимера. [c.391]


    Механические свойства наполненных пластических масс в значительной степени зависят от наполнителя, его структуры и ориентации. Так, например, предел прочности при растяжении стеклотекстолита равен по основе 2700— 2800 кГ см , а по утку всего 1500—1700 кГ/см . Изготовленные из непрерывных стеклянных нитей материалы СВАМ и НСП-1 имеют предел прочности при растяжении в направлении нитей 8000—9000 кГ/ л . [c.283]

    Количество стабилизатора, вводимого в поливинилхлорид, зависит от его природы и назначения полимера. Для порошкообразных стабилизаторов дозировка не должна превышать 5% от массы полимера, так как, являясь одновременно и наполнителями, эти стабилизаторы могут понизить пластические и механические свойства материала. Максимально допустимая дозировка стеаратов для паст составляет только 0,5—0,6% в связи с тем, что они склонны к выцветанию на поверхности пленки. [c.86]

    Свойства фаолита. Фаолит — кислотостойкая пластическая масса. Он стоек к действию фосфорной, соляной, серной и даже плавиковой кислот, органических кислот, многих органических жидкостей (бензол, формалин, дихлорэтан), минеральных масел. Свойства фаолита в большой степени зависят от вида асбеста. Так, антофиллитовый асбест придает ему высокую кислотостойкость, низкую адсорбционную способность и малую механическую [c.64]

    Рассмотрим подробнее механизмы образования и регулирования механических свойств твердых материалов на конкретных методах получения таких материалов, как металлы и сплавы, керамика, бетон, пластические массы. [c.386]

    Каждая тонна пластических масс заменяет в среднем 5— 6 т черных и цветных металлов, 3—3,5 т древесины. Благодаря высоким физико-механическим, диэлектрическим, оптическим и другим важным свойствам, способности легко формоваться в различные изделия сложной формы, больших габаритов с минимальными технологическими отходами (в среднем 5— 10%) пластмассы давно заняли самостоятельное положение в качестве конструкционных материалов. Особенно эффективно их применение в машиностроении и в таких его отраслях, как электротехника, автомобилестроение, приборостроение и др. [c.23]

    Благодаря созданию ряда оригинальных методов синтеза полимеров и применению новых систем инициаторов и катализаторов получены новые виды пластических масс, синтетических каучуков, химических волокон, пленок, быстро развивается производство синтетических термически стойких материалов, искусственной кожи, синтетических клеев, герметизирующих составов, компаундов, ионитовых поглотителей и т. д. Применение разнообразных методов исследования позволило детально изучить зависимость химических, механических, электрических и других свойств полимеров от их строения. [c.7]


    Повышенное содержание высокомолекулярных фракций в полимере сообщает ему более высокие прочностные свойства, повышенную твердость и температуростойкость. Начало пластического течения таких полимеров смещается в область более высоких температур. Полимеры с большим содержанием низкомолекулярных фракций имеют низкие прочностные свойства и в целом характеризуются худшими механическими свойствами. Средняя молекулярная масса и молекулярно-массовое распределение являются важными контрольными величинами при получении полимеров с нужными механическими свойствами. [c.17]

    Наибольшее техническое значение имеет продукт частичного омыления триацетата целлюлозы (вторичный ацетат), содержащий 2,4— 2,6 остатка уксусной кислоты на элементарное звено. Вторичный ацетат целлюлозы имеет молекулярную массу 95 000—110 000, плотность 1330 кг/м , растворяется в ацетоне, обладает высокой светостойкостью и хорошими физико-механическими свойствами. Применяется для производства волокна, негорючей кинопленки, пластических масс. [c.341]

    Механические свойства полимеров изменяются при производстве пластических масс, особенно текстолитов и стеклотекстолитов. Введение пластификаторов сильно снижает прочность и увеличивает пластичность с другой стороны, пластификаторы помогают полимерам распределяться тонкими слоями между частицами (волокнами) наполнителя, и после отверждения, происходящего одновременно с удалением значительной части пластификатора ( выпотевание за счет резкого понижения растворимости полимера), прочность значительно возрастает, приближаясь к прочности металлических материалов, а иногда и превосходит ее. [c.501]

    Оказалось, что в пластических массах часто сочетается несколько ценных свойств. Так, примером прочного материала является сталь, легкими и твердыми веществами являются дерево и алюминий пример прозрачного материала—стекло. Однако сталь химически неустойчива, она ржавеет трудно поддается механический обработке дерево гниет, непрозрачно, плохой изолятор электричества стекло—хрупко, трудно обрабатывается в холодном виде. Пластмассы же не имеют этих недостатков. Большинству пластмасс присущи легкость хорошие электроизоляционные свойства, высокая прочность они легко поддаются механической обработке. Многие пластмассы прозрачны, не гниют, стойки к действию сильных кислот и щелочей и др. [c.116]

    Вода отрицательно действует не только на механические, но и на диэлектрические свойства пластических масс. Исключение составляют фторопласты, полиэтилен[,1 и полистиролы. [c.280]

    Основные механические свойства пластических масс, применяемых в машиностроении, приведены в табл. 218 [5, 166, 181, 196, 131, 156, 152, 204]. [c.283]

    В червячно-лопастных смесителях можно смешивать пластические массы и резины, а также сыпучие п пастообразные материалы. В большинстве случаев эти машины изготовляют с двумя валами — смесительными органами, конструкция которых зависит от физико-механических свойств смешиваемых материалов. [c.245]

    Все свойства ПАВ рассматривались с точки зрения их влияния ка моющее действие. Моющее действие характеризуется эффективностью удаления загрязнений с поверхности тканей и твердых поверхностей и определяется природой твердых поверхностей (металл, стекло, пластическая масса), состоянием очищаемой поверхности, природой и структурой ткани, характером и интенсивностью загрязнения, свойствами моющих средств и их концентрацией, степенью жесткости воды, температурой раствора, силой механического воздействия на очищаемую поверхность, продолжительностью стирки. [c.24]

    В промышленности пластических масс полиамиды служат главным образом для изготовления изделий, работающих под нагрузкой, а также в условиях трения. Сочетание высокой механической прочности и легкости с хорошими антифрикционными и электроизоляционными свойствами, а также с коррозионной и химической стойкостью, способность поглощать и гасить вибрацию —все это сделало полиамидные пластические массы важнейшим материалом для машино- и приборостроения. Из них изготавливаются некоторые ответственные детали автомобилей и самолетов Несмотря на широкий ассортимент современных пластических масс, полиамиды остаются лучшим материалом для изготовления бесшумных шестерен, вкладышей подшипников, лопастей гребных судовых винтов, вентиляторов, рабочих колес центробежных и вихревых насосов [c.7]

    Выбор способа упаковки готовой продукции зависит от ее структурно-механических свойств. Твердые сыпучие или штучные продукты можно покрывать более прочной и стойкой к внешним воздействиям наружной оболочкой (съедобной или несъедобной) шоколадной или сахарной глазурью, хлебной корочкой, колбасной оболочкой и т.п. Затем такие изделия поштучно или группами можно заворачивать или фасовать в мягкие или жесткие тароупаковочные материалы, изготовленные из бумаги, картона или пластических масс. [c.33]


    Это объясняет существование большого количества различных методов механических испытаний, позволяющих всесторонне описать механические свойства полимеров и пластических масс, что крайне необходимо как при проведении научных исследований, так и для технического контроля. Следует отметить, что для получения сравнимых результатов необходимо строго соблюдать указанные условия испытаний. [c.238]

    Пластические массы, получаемые на основе фенолоальдегид ных смол, преимущественно фенолоформальдегидных (ФФС), объединяют под названием фенопласты. Пространственная структура ФФС в отвержденном состоянии определяет жесткость, неплавкость и нерастворимость фенопластов. В сочетании с длинноволокнистым наполнителем ФФС образуют материалы с высокими механическими свойствами (волокниты, текстолиты и др.), которые широко применяются в машиностроении. Благодаря хорошим диэлектрическим свойствам многие типы фенопластов используются в качестве электроизоляции. [c.151]

    Установлено, что кокс, образующийся из пластической массы, -содержащей мезофазу, характеризуется хорошими физико-химическими и физико-механическими свойствами. В связи с этим в условиях, когда угольные шихты обеднены хорошо спекающимися углями, предложено вводить в их состав органические углеводородные соединения в виде каменноугольных или нефтяных пеков, которые образуют при термической обработке мезофазу и поэтому названы мезогенными. [c.170]

    Увеличение степени дробления углей приводит к повышению вязкости пластической массы. Однако нельзя связывать этот эффект лишь с увеличением удельной поверхности контактирующих угольных частичек. Таким образом, изменения характера процессов, связанных с деструкцией веществ углей, в результате изменения скорости нагрева и степени дробления углей предопределяют физико-механические свойства кокса. [c.192]

    Учение о фазовых и физических состояниях полимеров имеет большое практическое значение для технологии переработки и для эксплуатации полимерных материалов. Взаимное расположение цепей определяет все механические характеристики волокон, пленок, каучуков, пластических масс, и задача полу ения полимерных материалов с заданными свойствами в очень сильной степени зависит От Структуры, которая придается материалу в технологических Процессах. [c.151]

    Одним из перспективных путей изменения прочностных свойств полимеров является их совмещение с высокодисперсными твердыми телами — наполнителями. Структурирующее действие наполнителей используется в производстве резин, пластических масс и других материалов для улучшения их механических свойств. Процессы структурообразования в таких наполненных полимерах определяются природой поверхности наполнителя. Путем химического модифицирования наполнителей можно управлять процессами структурообразования. [c.179]

    Хотя способность формальдегида к полимеризации, особенно в водных растворах, известна по существу столько же времени, сколько и сам формальдегид, полимерные модификации типа параформа, а- и р-полиоксиметиленов не находили практически никакого применения в изделиях. Известно, что эти продукты по физико-механическим свойствам не удовлетворяют даже минимальные требования к пластическим материалам, представляя собой рыхлую непрочную массу. По всей вероятности, это связано с наличием в полимерной цепочке молекул воды, резко снижающих качество продукта с точки зрения стабильности, прочности и т. д. Основное требование к получению высококачественных пластмасс на основе формальдегида — это безводный синтез из безводного сырья. Решение комплекса вопросов рецептуры и технологии получения высокомолекулярных полимеров формальдегида потребовало столько времени, что промышленные установки появились лишь в начале 1960-х годов . Однако в следующий период производство полиформальдегидных материалов развивалось довольно интенсивно как в СССР, так и за рубежом. В 1975 г. объем производства этих продуктов в капиталистических странах составлял уже около 250 тыс. т [332]. [c.190]

    Модифицированные подобным образом каучуки пригодны для производства лаков, клеев, пластических масс и резин, обладающих пониженной газопроницаемостью, повышенной морозостойкостью, масло- и бензостойкостью, стойкостью к озону, повышенным температурам, уизлучению и сопротивлением к старению. Механические свойства этих материалов зависят от типа каучука, характера присоединяющейся добавки и т. д. [c.612]

    Меламино-формальдегидные пресспорошки менее текучи, чем феноло-формальдегидные, и быстрее утрачивают текучесть при хранении. Изделия из меламино-формальдегидных пластических масс безвредны и бесцветны введением в исходные смеси красителей изделиям можно придавать любую окраску. Физико-механические свойства изделий из меламино-формальдегидных пластмасс мало отличаются от свойств изделий из фенопластов. [c.554]

    Первый том двухтомного справочника (предыдущее издание вышло в 1967 г.) содержит важнейшие сведения о пластических массах, выпускаемых промышленностью Советского Союза (по состоянию на вторую половину 1973 г.). В нем даны показатели физико-механических, теплофизических, электрических и химических свойств важнейших полимеризацион-ных полимеров, рассмотрены технические требования к вырабатываемым на их основе пластмассам, области их применения и способы переработки в изделия.., 8 каждом разделе приведены сведения о технике безопасности при переработке данных полимеров и пластических масс на их основе. Описаны наиболее распространенные пластификаторы, стабилизаторы и клеи для полимеров. [c.2]

    Со времени выхода первого издания справочника прошло более семи лет. За истекшие годы в промышленности пластических масс и синтетических смол были достигнуты большие успехи. Появились новые пластические массы, промышленностью освоено производство новых термостойких полимеров, улучшены физико-механические, теплофизические, электрические и химические свойства старых полимерных материалов, расширены области их применения. Все это нашло отражение во втором издании книги, в связи с чем главы справочника переработаны и дополнены в соответствии с современным уровнем развития технологии полимерных материалов. [c.3]

    В первом томе приводятся сведения о наиболее важных пластических массах на основе полимеризационных полимеров, а также о вспомогательных веществах, имеющих огромное значение для сохранения работоспособности полимеров и для регулирования их физико-механических свойств (пластификаторы, стабилизаторы, антистатики). Хотя клеи не являются пластмассами, составители справочника сочли целесообразным оставить эту главу во втором издании, поскольку содержащиеся в ней сведения весьма полезны для потребителей пластмасс. В первый том вошли следующие разделы  [c.3]

    Ценные физико-механические свойства пластических масс определяют их широкое применение в различных отраслях техники. Высокая коррозионная стойкость против воздействия различных химических сред, обусловленная отсутствием электрохимической корро-лши, выгодно отличает их от металлов и сплавов. Плотность пластических масс находится в пределах 1,0—1,8 г/см , т. е. ири одинаковых объемах пластмассовое изделие весит примерно в пять раз меньше металлического. [c.24]

    Механотермический способ является одним из наиболее распространенных способов получения биметаллического материала, производство которого в последние годы постоянно возрастает. Обычно при толщине покрытия, которая составляет 4—10% от толщины листа, сцепление защитного слоя с основным металлом происходит за счет диффузии при одновременном действии температуры и давления. Плакирование защищаемого металла проводят как с одной, так и с обеих сторон защищаемого материала. Механотермический способ применяют обычно для получения листового биметалла, однако возможно получить биметаллический материал также за счет пластического деформирования отлитых заготовок, для чего плакирующий металл заливают в форму с установленной в ней стальной заготовкой. Бн-метал аический прокат нашел большое применение в нефтеперерабатывающей промышленности для корпусов аппаратов, в криогенной технике для снижения массы и повышения сопротивления материала к действию низких температур для вакуумплотного оборудования при транспортировании и хранении сжижженных газов. Представляет интерес биметаллический прокат из сплавов АМг-6+сталь XI8H9T, выпускаемый промышленным способом при толщинах до 10 мм. Полученные биметаллические листы имеют следующие механические свойства Ов = 550—640 МН/м, От = 400—500 МН/м, 0=15— 20%, прочность сцепления слоев 100 МН/м, Стср = =50 МН/м. . Высокое относительное удлинение обеспе- [c.80]

    С каждым годом возрастает производство синтетических полимеров, т. е. высокомолекулярных соединений, получаемых из низкомолекулярных исходных продуктов. Быстро развиваются такие отрасли промышленности, как промышленность пластических масс, синтетических волокон, синтетического каучука, лаков (лакокрасочная промышленность) и клеев, электроизоляционных материалов и др. Промышленность пластических масс располагает в настоящее время большим количеством синтетических полимерных материалов с разнообразными свойствами. Некоторые из них превосходят по химической стойкости золото и платину, сохраняют свои механические свойства при охлаждении до —50 °С и при нагревании до +500 "С. Другие не уступают по прочности металлам, а по твердости приближаются к алмазу. Из синтетических полимеров получают исключительно легкие и прочные строительные материалы, прекрасную электроизоляцию, незаменимые по своим свойствам материалы для химической аппаратуры. Резиновая промышленность располагает теперь материалами, превосходящими по многим показателям натуральный каучук, одни материалы, например, газонепроницаемы, стойки к бензину и маслам, другие не теряют эластических свойств при температуре от —80 до -f300° . Новые синтетические волокна во много раз прочнее природных, из них получаются красивые, несминаемые ткани, прекрасные искусственные меха. Технические ткани из синтетических волокон пригодны для фильтрования кислот и щелочей. [c.19]

    Вследствие высокой механической прочности эпоксидных стеклотексто-литов и стекловолокнитов из них изготовляют разнообразные крупногабаритные изделия, прочность которых превосходит прочность стеклопластиков, получаемых на основе ненасыщенных полиэфиров. Однако они уступают последним по показателям диэлектрических свойств, радиопрозрачности и теплостойкости. Теплостойкость эпоксидных пластических масс можно повысить, применяя в качестве исходного вещества триглицидиловый эфир циапуровой кислоты (смола, выпускаемая фирмой Шелл)  [c.741]

    Некоторые пластические массы, например полиэтилен, полиамиды, полностью состоят из полимера, в других же содержание высокомолекулярных соединений не превышает 20—60%, а остальное составляют так называемые ачполнители (древесная мука, стеклянное волокно, асбест и др.). Назначение наполнителей—изменение свойств пластмасс в желаемом направлении—придаЕше им механической прочности, твердости г гнестойкости и проч. Введение наполнителей широко используется при изготовление пластических масс из феноло-формальдегидных, мочевино-формальдегидных, эпоксидных, и некоторых других полимеров. [c.117]

    Ганз С. Н П ар X о м е н к о В. Д. Физико-механические свойства антифрйКционных фторопластовых материалов, Пластические массы , 1964, № 8, стр. 28—31. [c.145]

    В послевоенные годы в нашей стране получили быстрое развитие исследования по синтезу высокополимерных соединений и изучению механизма полимеризации. Одним из видных ученых в этой области был Сергей Сергеевич Медведев (1891—1970). Его научная деятельность протекала в Физико-химическом институте им. Л. Я. Карпова. Он выдвинул теорию полимеризации на основе кинетики цепных процессов с участием свободных радикалов. С. С.Медведев изучал также механизм эмульсионной полимеризации и влияния радиации на ход полимеризации. Валентин Алексеевич Каргин (1907— 1969) также работал в Физикохимическом институте им. Л. Я- Карпова, а в послевоенные годы возглавил кафедру высокополимерных соединений Московского университета. Первые его работы посвящены коллоидной химии, но в послевоенные годы он целиком перешел к исследованиям по химии высокополимерных материалов. Большое значение для развития этой области получили работы В. А. Каргина по изучению структурно-механических свойств высокополимеров. Его труды привели к решению ряда технологических проблем производства пластических масс, каучуков и искусственных волокон. Он основал советскую школу физикохимиков-полимерщиков. [c.302]

    Пластические массы все шире используются в качестве конструкционных и поделочных материалов в различных областях машиностроения, в приборостроении, электротехнике, радиотехнике и многих других отраслях промышленности. Сочетание ряда ценных свойств обусловливает широкое применение пластических масс в современной технике. В отличие от металлов пластические массы являются теплоизоляционными материалами, хорошими диэлектриками, могут быть оптически или радиопрозрач-иыми, высокоупругими и даже эластичными. Все это совершенно не свойственно металлам, поэтому пластическая масса стала неотъемлемой частью любого прибора, аппарата, машины. Плотность пластических масс не превышает 2 г/сж , они не подвергаются коррозии, легко формуются в изделия, могут выдерживать высокие механические нагрузки. Благодаря этому пластмассы во многих случаях успешно заменяют металлы, особенно цветные (при изготовлении деталей машин, приборов, аппаратов), а также легкие сплавы (в производстве обшивок летательных аппаратов, автомобилей, вагонов, судов или корпусов приборов и аппаратов). [c.526]

    Пластификаторами служат высококипяш,ие вязкие жидкости, например сложные эфиры фталевой и себациновой кислот, растворимые в полимере, а также легкоплавкие синтетические воскоподобные вещества, хорошо совмещающиеся с полимером. В присутствии пластифицирующих добавок облегчается скольжение макромолекул размягченного полимера друг относительно друга, т. е. повышается текучесть материала. Пластификатор должен оставаться и в готовых изделиях, благодаря чему повышается их упругость, эластичность и морозостойкость, но снижается теплостойкость и ухудшаются диэлектрические характеристики, увеличивается коэффициент объемного термического расширения и возрастает ползучесть (хладотекучесть) материала под нагрузкой. Жидкие пластификторы постепенно улетучиваются из изделий, что вызывает их коробление и изменение физико-механических свойств (старение пластифицированных полимеров). Поэтому Б производстве пластических масс стремятся использовать воскоподобные пластификаторы. Количество пластификатора, вводимого в состав термопластичного полимера, можно варьировать в широких пределах в зависимости от требований, которые предъявляются к готовым изделиям. [c.529]

    Хлоропрен но шмеризуется гораздо быстрее, чем изопрен, точно так же как винилхлорид (стр. 477) полимеризуется быстрее, чем этилен. При стоянии в течение десяти дней полимеризация завершается, приводя к образованию прозрачного упругого вещества, напоминающего мягкий вулканизированный каучук, так же как и последний, не обладающий пластичностью и не поддающийся обработке на вальцах. Но если полимеризацию провести лишь частично и изолировать полимер от неизмененног о хлоропрена, то получается упругая масса, которая может быть обработана на вальцах так же, как и природный каучук, и нри нагревании переходит в непластичный нерастворимый полимер. Этот полимер можно сохранять в течение нескольких лет в пластическом состоянии при комнатной температуре, если добавить к нему небольшое количество фенил-р-нафтиламина. Для вулканизации неопрена (под таким названием известен этот полимер), таким образом, пе требуется сера, так как процесс полпмсризации завершается просто при нагревании. Механические свойства продукта [c.444]

    Водные дисперсии глинистых минералов являются коагуляционными структурами с весьма совершенной тиксотропией. Многочисленные исследования механических свойств глинистых минералов показали [1, 19—28], что процессы развития деформаций во времени Ё = / (т ) при постоянном напряжении сдвига Р хорошо описываются уравнением для последовательно соединенных моделей Максвелла — Шведова и Кельвина. Опи характеризуются модулями быстрой El и медленной Е эластических деформаций, условным статическим пределом текучести Р и наибольшей пластической (шведовской) вязкостью Til [22]. Вычисляемые из этих констант структурно-механические характеристики — эластичность А,, пластичность по Воларовичу PjiJf i и период истинной релаксации 0i— являются критерием для оценки технологических свойств различных технических дисперсий. Авторами статьи, например, установлены соответствующие структурно-механические критерии для керамических масс и буровых глинистых растворов [23—26]. [c.190]

    Общим требованием при стабилизации АЦ и пластических масс на их основе является стабильность свойств по времени при переработке в материалы и изделия, а условиях хранения и эксплуатации, а также под воздействием различных условий светопогоды. Под стабильностью свойст в А1,[ и пластических масс на их основе в первую очередь следует понимать стабильность формы, размера, внешнего вида и цвета стабильность физико-механических свойств материалов и изделий. Следует отметить, что ацетаты целлюлозы и пластические массы на их основе довольно стабильны но физко-механическим показателям и практически пе изменяют свойств при хранении в обычных условиях Однако при воздействии высоких температур, как уже отмечалось, (I >= 200°С) ЛЦ и пластические массы на нх основе приобретают сначала еле заметную оранжевую окраску, которая затем переходит в оранжевый и далее в коричневый и наконец в черный цвет Главным и первым внешним признаком старения ЛЦ и пластической массы на его основе под действием температуры является приобретение окраски (цвета). Цвет (оттенок) материала и изделия на основе ЛЦ, значительно снижает потребительские свойства их. Поэтому для ацетатов целлюлозы и пластических масс на их основе (в отличие от других производных целлюлозы) главным является стабилизация первоначального цвета полимера, материала и изделия на ею основе [c.95]


Смотреть страницы где упоминается термин Пластические массы механические свойства: [c.140]    [c.140]    [c.805]    [c.140]   
Полиамиды (1958) -- [ c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Массив свойств

Пластическая

Пластические массы

Пластические массы свойства



© 2025 chem21.info Реклама на сайте