Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алканы гомологи

    Первая, научная номенклатура - рациональная - учитывает строение соединения. За основу названия принимают наименование наиболее простого, обычно первого члена данного гомологического ряда. Все остальные соединения рассматривают как соответствующие замещенные производные этого простейшего гомолога. Для алканов это метан, а перед этим словом перечисляют названия заместителей, связанных с центральным углеродным атомом. Например, такое соединение  [c.22]


    До систематических работ Б. А. Казанского и М. Ю. Лукиной имеющиеся в литературе многочисленные сведения о легкости и направлении разрыва С—С-связей в циклопропанах были весьма противоречивы и не поддавались сравнению из-за значительных различий в условиях проведения этих реакций (см. обзоры [64— 66]). Например, если никель на кизельгуре вызывает полное превращение циклопропана в пропан уже при 0°С [67], то в присутствии никеля на пемзе для такого превращения необходима температура 180 °С [68]. Весьма противоречивы и другие данные. Так, согласно [69], для гидрогенолиза циклопропана нужна более высокая температура, чем в случае его гомологов, а согласно [70—72],— наоборот. Противоречивые данные имелись и в отношении направления разрыва кольца пр1 гидрогенолизе гомологов циклопропана. При наличии заместителя раскрытие трехчленного цикла происходит в основном по наиболее гидрогенизованным связям цикла, образуя изоалканы (направление 1) [73], однако в ряде других работ [64, 66] указывалось, что раскрытие цикла происходит у наименее гидрогенизованных атомов с образованием алканов нормального строения (направление 2)  [c.100]

    В основе промышленных способов получения ароматических углеводородов и высокооктановых бензинов лежат реакции С5- и Се-дегидроциклизации алканов. Широко дискутируемым в настоящее время является вопрос о путях превращения алканов в бензол и его гомологи. В настоящее время он перерос академические рамки и важен как для химиков-технологов, так и для специалистов в области приготовления катализаторов. Важное значение приобрел в последние несколько лет вопрос об участии водорода в реакциях дегидроциклизации (или активирования им катализаторов дегидроциклизации).  [c.7]

    По физическим свойствам бензол и его гомологи значительно отличаются от алканов и цикланов с тем же числом углеродных атомов в молекуле. Плотности и показатели преломления их выше. Бензол, л-ксилол, дурол, тетра-, пента- и гексаметилбензолы плавятся при температуре выше нуля. [c.30]

    Источники газообразных углеводородов — в первую очередь, природные и нефтяные попутные газы, а также некоторые синтетические газы, полученные при переработке горючих ископаемых (например, термическая и термокаталитическая переработка нефти и нефтепродуктов, термическое разложение — газификация — твердого и жидкого топлив, а также коксование твердого топлива — коксовый газ). В отличие от природных, синтетические газы наряду с алканами содержат также и ненасыщенные углеводороды, значительные количества водорода и др. Природные газы содержат в основном метан и менее 20 % в сумме этана, пропана и бутана, примеси легкокипящих жидких углеводородов — пентана, гексаиа и др. Кроме того, присутствуют малые количества оксида углерода (IV), азота, сероводорода и благородных газов. Многие горючие природные газы, залегающие на глубине не более 1,5 км, состоят почти из одного метана. С увеличением глубины отбора содержание гомологов метана обычно растет. Образование горючих природных газов — в основном результат катагенетического преобразования органических веществ осадочных горных пород. Залежи горючих газов формируются в природных ловушках на путях его миграции. Миграция происходит при статической или динамической нагрузке пород, выжимающих газ, а также свободной диффузии газа из областей высокого давления в зоны меньшего давления. Подземными природными резервуарами для 85 % общего числа газовых и газоконденсатных залежей являются песчаные, песча-но-алевритные и алевритные породы, нередко переслоенные глинами. В остальных 15 % случаев коллекторами газа служат карбонатные породы. Все газовые и газонефтяные месторождения приурочены к тому или иному газонефтеносному осадочному (осадочно-породному) бассейну, представляющему собой автономные области крупного и длительного погружения в современной структуре земной коры. Все больше открывается газовых месторождений в зоне шельфа и в мелководных бассейнах, например Северное море. Наиболее крупные газовые месторождения СССР—Уренгойское и Заполярное — приурочены к меловым отложениям Западно-Сибирского бассейна. [c.194]


    Первые четыре члена гомологического ряда предельных углеводородов (алканов) имеют тривиальные названия (метан, этан, пропан, бутан). Названия последующих гомологов производятся от греческих числительных с добавлением суффикса -ан  [c.55]

    Открытие ароматизации алканов на Pt/ — закономерное следствие исследований реакции гидрогенолиза циклопентанов. Действительно, Б. А. Казанским и А. Ф. Платэ [2] в продуктах гидрогенолиза бутилцикло-пентана были обнаружены арены, которые отсутствовали при аналогичных реакциях низших гомологов циклопентана. Полученные результаты привели к выводу, что в условиях опыта происходит замыкание шестичленного цикла с образованием бензольного кольца  [c.190]

    Значения инкрементов группы СНг, приведенные в табл. 1, 5 и VI, , относятся не только к алканам. Они лежат в основе расчета справочных данных для высших гомологов нормальных алкенов, -алкинов, н-алкилбензолов, н-алкилциклопентанов, [c.219]

    На рис. VII, 7 показано соотношение между теплотами образования (дя,, 29з) н-алканов и н-алкенов в газообразном состоянии по данным В то время как зависимость ДЯf, 293 от числа атомов углерода (п) становится линейной только начиная с п = 6, зависимость тех же величин для двух гомологических рядов в форме, представленной на рис. VII, 7, вследствие примерно одинаковых отклонений от линейной зависимости будет иметь линейный характер и для низших гомологов (обычно все же кроме первого и иногда второго члена). Подобные же соотношения характерны и для теплот сгорания. [c.300]

    К и их при нормальной температуре кипения. Эти данные показывают, что только при температуре кипения мало различаются для этих алканов, а стандартные изменения энтропии при 298,15 К значительно различаются для разных алканов. Поэтому предложение считать их постоянными и равными для разных веществ 22,5 (или 23) кал/(К-моль) нельзя признать правильным для общего случая. Наоборот, изменения этой величины в ряду н-алканов настолько закономерно, что для высших гомологов можно приближенно принять для нее постоянный инкремент группы СН2[1,39 кал/(К-моль)]. [c.303]

    Существует несколько способов рассмотрения количественного содержания индивидуальных углеводородов в нефтях. Наиболее простой из них — это определение абсолютной концентрации данного соединения в нефти. Однако при этом теряются весьма важные закономерности, связанные с концентрационным распределением изомеров. Кроме того, незначительные по своей абсолютной величине цифры (например, 0,02, 0,005% и т. д.), характеризующие концентрации отдельных углеводородов, плохо воспринимаются и плохо запоминаются. Более интересной является оценка относительного распределения изомеров или гомологов. Этот способ, предложенный в работе [8], весьма удобен для различных теоретических обобщений и дает наглядное представление о связи между строением алканов и их концентрацией в различных нефтях. [c.42]

    Качественное исследование кинетики сорбции индивидуальных жидких углеводородов от н-пентана до н-гептадекана [212] на кристаллических цеолитах СаА при различных температурах показало, что несмотря на то, что рассматриваемые гомологи имеют один и тот же не критический диаметр молекул, наблюдается сложная поли-модальная зависимость сорбционных свойств — скорости сорбции, энергии активации, теплот сорбции н-парафинов от длины молекулы. Представляет интерес сравнение данных по жидкофазной адсорбции н-алканов на цеолите СаА из их растворов в изооктане и из масляных фракций. [c.285]

    На рис. 27 представлены хроматограммы смеси гомологов м-алканов от пропана до октана [43]. Хроматограмма а соответствует изотермическому режиму при температуре колонки 45° С. Из хроматограммы видно, что изотермическое разделение гомологического ряда н-алканов позволяет достаточно четко и быстро разделить лишь первые четыре компонента смеси (пропан, бутан, пентан и гексан). Пики пятого и шестого компонентов в этих условиях практически неопределяемы. [c.85]

    Таким образом, прибавляя метиленовую группу, можно получить любую молекулу из класса алканов. СН -группа называется гомологической разностью, а члены ряда, отличающиеся на одну гомологическую разность, называются гомологами. [c.194]

    Следовательно, углеводороды метан, этан, пропан, бутан и т. д. — гомологи одного и того же ряда, который называют рядом предельных, или насыщенных, углеводородов (алканов) или, по первому представителю, — рядом метана. [c.553]

    Как видно, только атомы фтора и хлора вырывают из метана водород экзотермично. Для брома, хотя процесс в итоге слабо экзотерми-чен, но стадня превращения метана в метильный радикал эндотермична, и реакция не идет. Лучше обстоит дело с фотохихмическим бромирова-нием алканов — гомологов метана — и циклоалканов, однако реакционные цепи и здесь очень коротки и квантовые выходы низки. Например, для бромирования циклогексана квантовый выход при комнатной температуре составляет в то время как при хлорировании а при фторировании еще больше. Фотохимическое бромирование толуола в цепь из-за большей стабильности бензильного радикала (и более низкой его энергии — следствие рассредоточения электрона по сопряженной я-электронной системе) экзотермично уже на стадии отрыва водородного атома, и реакция идет. Как показали Хараш и Броун, свободнорадикальное хлорирование оптичсски активного 1-хлор-2-метил-бутана [c.497]


    Металлы VHI группы периодической системы элементов различным образом ведут себя в качестве катализаторов гидрогенолиза циклопентанов. Платиновые катализаторы являются весьма специфическими в присутствии этого металла водород, присоединяясь к двум соседним атомам углерода, расщепляет С—С-связь кольца практически без каких бы то ни было побочных реакций. Соверщенно иначе, и в то же время по-разному, ведут себя в этой реакции Pd- и Ni-катализаторы. Б. А. Казанским с сотр. показано, что Pd/ не активен в реакциях гидрогенолиза циклопентана и его гомологов [216—218], в то время как над Ni/A Oa [142, 218, 219] происходит глубокий распад циклопентанов с преимущественным образованием метана. Исследован [138, 220] гидрогенолиз пятичленного цикла над Pt- и Ni-ка-тализаторами при гидрогенолизе н-бутилциклопентана над Ni/AbOa обнаружено большое количество нпзкомо-лекулярных углеводородов [138]. Аналогично при гидрогенолизе метилциклопентана над тем же катализатором при 240°С образовывалось до 40% газообразных алканов [142]. Подробно изучен [218] гидрогенолиз самого циклопентана над Ni-катализатором. Прн 250 около 30% циклопентана превращалось в метан, а жидкий катализат почти целиком состоял из исходного циклопентана. Таким образом, Ni-катализаторы оказались далеко не столь селективными при гидрогенолизе циклопентанового кольца, как Pt/ . Такое же жесткое действие на циклопентан и метилциклопентан оказывают и [c.160]

    На основании изучения состава семи бензинов было установлено [56], что различный состав этих бензинов основан на различном соотношении пяти типов углеводородов нормальных алканов, изоалканов, циклонентана и его гомологов, циклогексана и его гомологов, бензола и его гомологов однако внутри каждого типа соотношение содержания индивидуальных углеводородов имеет одно и то же значение. [c.20]

    Низшие алканы нитруют в газовой фазе (в динамической системе) при 150—500 °С. По некоторым данным, энергия активации нитрования метана составляет около 52 ккал1моль для пропана и бутана она значительно меньше. У высших гомологов метана значения энергии активации приблизительно одинаковы. Эти данные позволили сделать качественные выводы о нитровании низших алканов (С —С ) в газовой фазе. [c.297]

    В низкотемпературной области (ниже 400° С) на катализаторах Ni—СГ2О3 по термодинамическим соображениям (равновесие II) следует ожидать ступенчатой деструкции высших алканов до низших гомологов [28] [c.148]

    Для определения температурной зависимости параметров реакций образования гомологов простое сравнение в той или другой степени применимо только для расчета теплот образования и связанных с ней величин, но не для A5f, АС/ и Igi f. При расчете AHj можно пользоваться и допущением о постоянстве разностей, и допущением о постоянстве отношений. Оба они дают в этом случае довольно значительную погрешность, но первый путь обычно несколько точнее, и в дальнейшем здесь можно ограничиться в основном иллюстрацией метода разностей. В табл. VH, 13 сопоставлены теплоты образования AHf алканов. Изменение разностей и Яг при изменении температуры от 298 до 1500 К достигает, например, для -бутана — к-пентана 0,9 при изменении AH°f [c.287]

    Какие же структуры разветвленных алканов можно отнести к углеводородам изопреноидного типа строения Строго говоря, терминология здесь несколько произвольна, так как изопреноидные алканы нефтей не обязательно состоят из, отдельных изопреновых единиц. В этих углеводородах, как в типичных реликтах, проявляется их гомологичность и, конечно, неравновесность . Критерием для отнесения алканов к изопреноидным углеводородам служит правильное чередование метильных групп. Гомологичность является, как и всюду, следствием процессов деструкции более высокомолекулярных источников. Однако в отличие от реликтовых не-разветвленных алканов в изонреноидах всегда можно обнаружить провалы в концентрациях тех или иных гомологов. Эти провалы (отсутствие или малые относительные концентрации) некоторых гомологов являются следствием невозможности разрыва цепи (образования гомолога) в том месте, где находятся замещающие ме-тильные радикалы. Эта особенность чрезвычайно важна для определения источников образования тех или иных изопреноидных алканов. Именно отсутствие некоторых гомологов дает иногда наиболее ценную информацию. [c.60]

    В уже упоминавшейся нами нефти месторождения Каражанбас, помимо изопреноидных алканов, были найдены углеводороды интересного гомологического ряда состава С —С21, имеющие явно реликтовую структуру. Эти углеводороды принадлежат к гомологам 1,1,3-триметил-2-алкилциклогексана [8] (I). [c.91]

    Поскольку реагирующие олефины представлены серией гомологов, то этот процесс приводит к получению равностатистической смеси четных и нечетных нормальных алканов. [c.198]

    Растворяющая способность битумоил,ов и нефтей в сжатых природных газах резко возрастает в ряд/ метан — двуокись углерода — пропан — высшие гомологи метана. Наибольшая растворимость у алканов, далее идут циклоалканы, арены, смолы, ас-фальтепы. [c.35]

    В нефти установлено присутствре всех нормальных алканов от бутана ( кип 0,5°С) до трнтрнакоитана СззНез (/кип 475°С) некоторые из этих углеводородов выделены в чистом виде с чистотой свыше 99% (мол.). Содержание нормальных алканов в нефтях понижается с повышением молекулярной массы количество высших гомологов составляет 0,1% и ниже. [c.106]

    Как следует из приведенных данных, наивысшими цетановыми числами обладают алканы нормальюго строения у разветвленных алканов цетановое число ниже, причем оно снижается с увеличением количества боковых цепей. Уменьшается цетановое число и при наличии в молекуле двойной связн. Наихудшие воспламенительные свойства имеют бициклические углеводороды — гомологи нафталина у гомологов бензола цетановые числа несколько выше. Циклоалканы и бициклоалканы по воспламенительным свойствам занимают промежуточное положение между алканами и аренами. [c.346]

    Для разделения бензина и газойлевой фракции нефти Понка было испытано несколько полярных и неполярных адсорбентов — силикагель, оксид алюминия, оксид магния, активный уголь [4]. Отмечен ряд закономерностей адсорбции углеводородов на силикагеле 1) снижение сорбируемости происходит в ряду поли- и бициклические арены > арены с одним ароматическим кольцом > циклоалканы и алканы 2) адсорбируемость нормальных алканов уменьшается с увеличением в молекуле числа углеродных атомов 3) циклопентан и алкилциклонентаны сорбируются более прочно, чем циклогексан и соответствуюшие алкилциклогексаны 4] нормальные алканы адсорбируются сильнее, чем разветвленные с тем же числом углеродных атомов 5) гексан сорбируется более прочно, чем циклогексан, но нормальные алкилциклогексаны — сильнее, чем нормальные алканы с тем же числом углеродных атомов 6) полиалкилбензолы сорбируются более прочно, чем моноалкилбензолы с тем же числом углеродных атомов 7) о-дизамешенные гомологи бензола сорбируются сильнее, чем и-изомеры и, по-видимому, чем ж-изомеры. Различия в сорбируемости углеводородов, отмеченные в пунктах 2—7, сравнительно невелики, и порядок может измениться при малых концентрациях одного из компонентов. [c.60]

    Асфальтены наиболее высокомолекулярные гетероорганические вещества нефти, представляющие собой твердые продукты от чер-но-бурого до черного цвета. Свежевыделенные асфальтены хорошо растворяются в сероуглероде, хлороформе, четыреххлористом углероде, бензоле и его гомологах, циклогексане и ряде других растворителей, не растворяются в низкомолекулярных алканах (Сб—Се), диэтиловом эфире, ацетоне и др. Однако со временем, особенно под действием солнечного света, асфальтены теряют способность растворяться в бензоле. [c.93]

    Автором предложено правило потенциалов ионизации", которое заключается в следующем чем ниже ПК раствориге-ля, тем хуже растворимосгь АСВ Способность к осаждению АСВ падает при переходе от высших гомологов к низшим ii частности, в ряду алканов имеем зависимость  [c.111]

    Содержание алканов нормального строения в реактивных 5-7, в дизельных топливах 10-20%. Изоалканы в топливах характеризуются малораз-ветвленным строением, количество боковых цепей невелико, их длина - до 2-5 атомов углерода. Среди циклоалканов обнаружены moho-, ди-, три- и тетра-замещенные циклогексаны и циклопентаны, в боковых цепях содержатся 1 -3 атома углерода. Присутствуют и бициклические кондесированные циклоалканы (декалин и его гомологи). [c.16]


Смотреть страницы где упоминается термин Алканы гомологи: [c.112]    [c.192]    [c.22]    [c.222]    [c.224]    [c.31]    [c.62]    [c.67]    [c.67]    [c.92]    [c.116]    [c.10]    [c.24]    [c.37]    [c.106]    [c.79]    [c.38]    [c.57]    [c.20]   
Общая химия (1987) -- [ c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы

Алканы гомология

Алканы гомология

Гомологи

Гомологи гомология

Гомология

Физические свойства алканов. Понятие гомологии



© 2025 chem21.info Реклама на сайте