Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидроциклизация алканов

    ВИИ Pt/ и Pd/ при 200—300 °С диэтиламин претерпевает ряд сложных превращений два из них являются главными [39]. Первое направление (а) сходно в известном смысле с Сз-дегидроциклизацией алканов и приводит на первом этапе реакции к пирролидиновому кольцу, которое далее превращается в бутиронитрил и пиррол. Второе направление (б) представляет собой деструктивный распад исходного амина по относительно непрочной связи С—N с образованием этиламина, который далее дегидрируется в ацетонитрил  [c.197]


    В основе промышленных способов получения ароматических углеводородов и высокооктановых бензинов лежат реакции С5- и Се-дегидроциклизации алканов. Широко дискутируемым в настоящее время является вопрос о путях превращения алканов в бензол и его гомологи. В настоящее время он перерос академические рамки и важен как для химиков-технологов, так и для специалистов в области приготовления катализаторов. Важное значение приобрел в последние несколько лет вопрос об участии водорода в реакциях дегидроциклизации (или активирования им катализаторов дегидроциклизации).  [c.7]

    Механизм отравления Pt-катализатора в ходе превращений 3-метилпентана исследован с помощью изотопных методов [117]. Показано, что в ходе протекания реакций Сз-дегидроциклизации и изомеризации происходит необратимое удерживание части молекул углеводорода на катализаторе, следствием чего является селективное отравление активной поверхности катализатора. Предполагают, что реакции Сз-дегидроциклизации и изомеризации алканов протекают на участках поверхности Pt-черни, представляющих собой определенную геометрическую комбинацию атомов металла. При этом из участия в реакциях дегидроциклизации — изомеризации выводится весь активный центр, если этому предшествует хотя бы частичное блокирование атомов в ансамбле. В то же время реакция дегидрирования может успешно протекать на оставшейся незанятой части ансамбля. В соответствии с этим на рис. 42 изображены возможная схема хемосорбции 3-метилпентана при его Сз-дегидроциклизации и схема хемосорбции метилциклопентана при гидрогенолизе на грани Pt (111) [118]. Таким образом становится очевидным определенное сходство в строении промежуточных комплексов реакций Сз-дегидроциклизации алканов, гидрогенолиза циклопентанов и изомеризации алканов [63, 82, 101, 118]. [c.224]

    Так, ранее уже упоминалось, что при Сз-дегидроциклизации алканов на Pt/ выходы продуктов циклизации зависят от строения исходных углеводородов. Например, в одинаковых условиях из н-гексана получается [c.210]

    Г. Д. Гальперн [21] показал, что в процессе дегидрирования сураханского бензина (фракции 185—195°) над платиновым катализатором при 300—310° не происходит ни дегидроциклизация алканов, ни гидрогенолиз пятичленных цикланов. Побочные реакции, искажающие конечные результаты, не имеют места в случае дегидрогенизации лигроиновых фракций. [c.165]

    Реакция Сз-дегидроциклизации алканов была открыта Б. А. Казанским и А. Л. Либерманом [22] в 1954 г., спустя почти 20 лет после открытия Сб-дегидроциклизации. Уже на ранней стадии исследования были найдены катализатор [(20% Р1)/С] и условия, оптимальные для протекания Сз-дегидроциклизации алканов [23—25]. Впервые реакция была обнаружена на примере м-гепта-на и к-октана и далее весьма подробно изучена с использованием 2,2,4-триметилпентана  [c.191]


    Была описана Сз-дегидроциклизация алканов в присутствии алюмохромового катализатора [36, 37]. Однако в этом случае условия реакции неизмеримо жестче, чем в случае Pt/ , что вызывает ряд побочных и вторичных преврашений и, естественно, затрудняет интерпретацию полученных данных. К тому же выходы циклопентанов на этих катализаторах были существенно меньше, чем на Pt/ . Этим, по-видимому, объясняется то, что Сз-дегидроциклизация в присутствии оксидных катализаторов осталась мало исследованной. [c.192]

    Кинетика реакции Сз-дегидроциклизации алканов и алкилбензолов изучалась главным образом в присутствии Pt/ [57]. Оказалось, что в этом случае реакция [c.197]

    Необходимо подчеркнуть правильный с нашей точки зрения вывод об общей природе пятичленного переходного состояния двух реакций Сз-дегидроциклизации алканов и гидрогенолиза циклопентанов. Эти реакции обратимы и идут в сходных условиях на поверхности одних и тех же Pt-катализаторов. [c.202]

    В дальнейшем для более глубокого понимания механизма дегидроциклизации алканов в присутствии оксидных катализаторов был использован [21] кинетический изотопный метод, с помощью которого удалось исключить из приведенной выше схемы ряд стадий (2, 3, 6, 10). Так, в опытах со смесями н-гексан — циклогексан- С удельная радиоактивность циклогексана не уменьшалась, т. е. из гексана не образуется нерадиоактивный циклогексан. Это означает, что последний не является промежуточным продуктом в процессе ароматизации н-гексана. В то же время в опытах со смесями гексан — гексен- С в катализате обнаружено заметное уменьшение мольной радиоактивности гексена, что, очевидно, вызвано разбавлением меченого олефина нерадиоактивным гексеном, образующимся при дегидрировании гексана. Полученный бензол обладал большей мольной радиоактивностью, чем непрореагировавший гексен, что говорит об образовании бензола через гексен [147]. Существенным фактом является появление в катализате меченых гексадиенов (из гемсена- С). Опыты по арома- [c.238]

    Основываясь на представлениях секстетно-дублетного механизма Сб-дегидроциклизации алканов, было подробно исследовано [64] изменение селективности протекания этой реакции на примере н-гептана по двум возможным направлениям  [c.214]

    Таким образом, можно констатировать, что на селективность Сб-дегидроциклизации н-гептана по направлениям 1 и 2 влияет не только характер адсорбции н-гептана, но и относительная концентрация водорода на поверхности катализатора. Из сказанного выше становится очевидным, что использование представлений секстетно-дублетного механизма оказалось плодотворным для предсказания и объяснения ряда результатов в ходе протекания реакций Сб-дегидроциклизации алканов и гидрогенолиза циклопентанов. [c.219]

    Одновременность протекания изомеризации и s-дегидроциклизации алканов, а также совпадение отношения 2-метилпентан 3-метилпентан позволило сделать заключение, что в условиях эксперимента изомерные гексаны образовывались путем s-дегидроциклизации и последующего гидрогенолиза пятичленного цикла. Такой путь изомеризации представляется достаточно реальным и в присутствии других Pt-катализаторов и рассматривается как один из двух главных путей изомеризации алканов на металлах [64, 82]. Обнаружено [ИЗ] также, что разные каталитические функции Pt-катали-затора без носителя, описанные ранее, зависят от наличия водорода в газовой фазе. [c.223]

    Таким образом, можно считать установленным, что наличие водорода является обязательным условием Сз-дегидроциклизации алканов и Сз-циклизации алкенов в присутствии различных Pt-катализаторов. При этом частица водорода тем или иным способом входит [c.233]

    Таким образом, остается открытым вопрос о механизме Сб-дегидроциклизации в присутствии такого катализатора, как Pt/ , где металл отложен на химически инертном носителе. Естественно, что в этом случае обсуждаемая схема механизма Сб-дегидроциклизации алканов не может быть использована. Очевидно, нельзя перенести эту схему и на те случаи Сб-дегидроциклизации углеводородов, когда реакция проходит в присутствии металлических катализаторов без носителя. В ра- [c.256]

    Реакции дегидрирования цикланов и дегидроциклизации алканов связаны со значительным потреблением тепла, а так как в стационарных каталитических слоях наиболее удовлетворительной формой подвода тепла является внесение его с парами сырья и водорода, то неизбежный перегрев паров сырья до ввода в реакционную камеру давал начало чисто термическим реакциям коксования в трубчатых печах и усугублял положение с коксованием окисных катализаторов. [c.292]

    О. В. Брагин, Б. А. Казанский и др. [91] при сопоставлении скоростей С5-дегидроциклизации индивидуальных 2- и 3-метилпен-танов и их смесей примерно с 20% соответствующих олефинов на Р1/С (20%Р(, 300°С, объемная скорость 0,2 ч ) показали, что олефины тормозят эту реакцию и, следовательно, не могут быть Б ней промежуточными соединениями. В тех же условиях выход бензола из гексена-1 выше, чем из н-гексана, что согласуется с представлением об олефинах как о промежуточных соединениях при Сб-дегидроциклизации. Это подтверждает различие механизмов С5- и Сб-дегидроциклизации алканов на платине, нанесенной на активированный уголь (Р1/С). [c.135]


    Таким образом, изучением механизма Се-дегидроциклизации алканов показано, что на окиснохромовых катализаторах эта реакция протекает по схеме  [c.136]

    Побочными нежелательными реакциями при каталитическом риформинге являются уплотнение и конденсация непредельных и ароматических углеводородов, а также глубокий гидрокрекинг алканов и цикланов с образованием газообразных углеводородов. Что касается кинетики основных реакций, то с наибольшей скоростью протекает дегидрирование нафтенов. Значительно медленнее идет дегидроциклизация алканов и еще медленнее — их изомеризация. [c.245]

    При риформинге бензиновых фракций из парафинистых нефтей преобладающими являются реакции дегидроциклизации алканов и гидрокрекинга, позволяющие даже из низкооктанового парафинистого сырья получать катализаты, пригодные для выработки автобензина А-76 в смеси с другими компонентами. [c.122]

    В современном промышленном способе каталитической ароматизации нефтяного сырья в основном используются реакции дегидрогенизации цикланов и циклизации (дегидроциклизации) алканов. В результате этих реакций образуется свободный водород. Последний сразу же вступает в реакции гидрогенизации непредельных углеводородов, образующихся при распаде некоторой части алканов. Таким образом,, одна из составляющих реакций этого процесса является поставщиком водорода, необходимого для другой реакции. В этом отличие рассматриваемого процесса от процесса деструктивной гидрогенизации. [c.233]

    Реакция дегидроциклизации алканов  [c.139]

    Полагают, что строение этого соединения аналогично известным в настоящее время я-аллильным комплексам солей палладия [27]. В связи с этим имеет безусловный интерес отмеченный в работе [3] факт, что миграция двойной связи при гидрировании замещенных циклоалкенов происходит лишь в присутствии водорода. Это перекликается с аналогичной зависимостью в случае ал-кенов с открытой цепью [28—30], а также с закономерностями, обнаруженными нами при изучении реакций конфигурационной изомеризации диалкилциклоалканов [31], Сз-дегидроциклизации алканов [32] и некоторых превращений алкенил- и алкилиденциклобутанов [33]. Об этом речь пойдет в следующих разделах. [c.30]

    Оставляя в стороне предположения о п-ненасыщен-ной природе этого переходного комплекса, необходимо подчеркнуть весьма интересный и правильный, с нашей точки зрения, вывод об общей природе пятичленного переходного состояния реакций Сз-дегидроциклизации алканов и гидрогенолиза циклопентанов. Эти реакции обратимы и идут в сходных условиях на поверхности одного и того же Pt-кaтaлизaтopa. Независимо от указанных авторов и в более детализированной форме к такому же выводу пришел один из авторов данной книги [c.135]

    В последнее десятилетие механизм и селективность протекания реакции Сз-дегидроциклизации углеводородов в присутствии различных платиновых катализаторов изучались многими исследователями. Оказалось, что на алюмоплатиновых катализаторах в условиях платфор-минга [41—43], а также в импульсном режиме [13, 44— 49] Сз-дегидроциклизация алканов проходит достаточно успешно, хотя и осложняется рядом других реакций (Сб-дегидроциклизация, дегидроизомеризация и пр.). [c.193]

    Показано [52], что в условиях импульсного режима при 400—540°С над Pd-катализатором [(0,6% Pd)/ /AI2O3] также протекает Сз-дегидроциклизация алканов. Правда, по активности в отношении этой реакции РЙ/АЬОз значительно уступает Р1/А120з. Что же касается Сб-дегидроциклизации, то в указанных условиях оба катализатора обладают примерно одинаковой активностью. При масс-спектрометрическом изучении превращений паров н-гексана над Pd-лентой обнаружено [53], что при давлении ЫО Па Сб-дегидроциклизация н-гексана наблюдается уже при 20 °С, а при повышении температуры до 200°С н-гексан практически целиком превращается в бензол. [c.196]

    Рассмотрение всех описанных выше фактов позволило А. Л. Либерману предложить механизм Сз-дегидроциклизации алканов [63], основанный на прямой циклизации. Новые данные, которые были получены с тех пор, хорошо согласуются с предложенной схемой, дополняют и углубляют ее, позволяя, в частности, рассматривать некоторые аспекты изучаемой реакции с позиций современных конформационных представлений. Учитывая принцип микрообратимости, можно полагать, что в присутствии Pt/ реакции гидрогенолиза циклопентанов и Сз-дегидроциклизации алканов проходят через общее переходное состояние (см. разд. V.1). Для понимания причин, благодаря которым фактически в одних и тех же условиях происходят обе названные реакции, были привлечены конформационные представления и предложена новая мультиплетно-деформационная схема переходного состояния обеих обсуждаемых реакций (см. рис. 26). При рассмотрении этой схемы следует помнить, что в переходное состояние входят также два атома водорода, расположенные по обе стороны от С-атомов, участвующих в разрыве илн образовании С—С-свя- [c.208]

    При Сб-дегидроциклизации алканов и Сз-циклизациц алкенов на Pt/AbOa показано [84, 126], что скорость реакции в отсутствие Нг быстро падает, доходя фактически до нуля, и наоборот, в токе Нг проходит успешная циклизация как алканов, так и алкенов. Роль водорода при образовании циклопентанов в присутствии алюмоплатиновых катализаторов с низким содержанием Pt пока недостаточно ясна. Возможно, что влияние водорода на протекание реакции осуществляется по нескольким направлениям, часть которых обсуждалась выше. Не исключая этих возможностей и в случае нанесенных Pt-катализаторов, следует также обсудить ассоциативный механизм действия водорода [84], представляющийся авторам книги одним из наиболее вероятных. В соответствии с обсуждаемой схемой водород в случае реакции Сб-дегидроциклизации алканов играет ту же роль, что и в ряде других реакций, протекающих в присутствии металлсодержащих катализаторов, в частности в реакции миграции двойной связи в алкенах [127] и в конфигурационной изомеризации диалкилциклоалканов [128]. В этих реакциях водород входит в состав переходного комплекса, образующегося на поверхности катализатора по ассоциативной схеме. Можно полагать, что реакция Сз-дегидроциклизации, также протекающая при обязательном присутствии и, по-видимому, с участием Нг, проходит через промежуточные стадии образования и распада переходного состояния  [c.230]

    Следует, однако, отметить, что высказанные выше соображения и выводы относительно механизма ароматизации алканов на металлических и металлоксидных катализаторах нельзя считать окончательными. Результаты, приведенные в [143, 144], дают основание считать, что механизм Сб-дегидроциклизации алканов на различных Pt-катализаторах в большой мере зависит от условий проведения эксперимента и в значительной степени— от строения исходного углеводорода. Анализируя имеющиеся данные, можно сделать вывод, что ароматизация н-алканов проходит преимущественно через промежуточные стадии дегидрирования и Сб-дегидроциклизации. В то же время алканы, имеющие четвертичный атом углерода (например, 2,2- или 3,3-диметилгексаны), не могут в условиях реакции столь же легко дегидрироваться и их ароматизация хотя бы частично проходит, по-видимому, по другому механизму — через стадию образования геж-диметилциклогексана. [c.240]

    Показано [155, 156], что использование для приготовления алюмоплатинового катализатора оксида алюминия с бидисперсным распределением размера пор способствует значительному росту каталитической активности, селективности и стабильности катализатора в реакции Сб-дегидроциклизации алканов. Синтезированные на основе бидисперсного оксида алюминия алюмоплати-иовые катализаторы хорощо зарекомендовали себя в реакциях каталитического риформинга индивидуальных [c.243]

    В работе [157] описывается приготовление и характеристика частично кристаллизованных пористых стекол с бидисперсным распределением размера пор. Показано, что Pt-катализаторы, нанесенные на такие пористые стекла, являются активными и селективными катализаторами образования бензола при Сб-дегидроциклизации алканов. При исследовании каталитических и физических свойств нанесенных на Si02 биметаллических систем (Pt—Au, Pt—Sn, Rh— u) прослежена определенная взаимосвязь между дисперсностью металлической фазы (рентгеновский метод) и активностью катализаторов в реакциях С5- и Се-дегидроциклизации н-гексана [158]. [c.244]

    Химию нефти в значительной степени обогатили глубокие ис-следоваия Зелинского и его учеников. В 1911 г. Зелинский открыл явление, названное им избирательным катализом, заключающееся в обратимом гидрировании-дегидрировании шестичленных нафтенов на металлических катализаторах. Позднее он исследовал процесс разложения нефтяных фракций в присутствии флоридина (1915 г.), а затем хлорида алюминия (1918 г.). Работы Гудри по каталитическому крекингу нефтяных фракций, выполненные в двадцатые годы, фактически были продолжением исследований Летнего, Лермонтовой и Зелинского в области катализа. Важное практическое значение имела реакция дегидроциклизации алканов на металлических и оксидных катализаторах, открытая в 1935—1936 гг. Зелинским, Казанским, Молдавским, Каржевым и их сотрудниками [5, 6], которая дала возможность получать ароматические углеводороды из парафинового сырья. [c.5]

    В настоящее время в нефтепереработке существует целый ряд технологических каталитических процессов, в ходе которых в той или иной степени осуществляются различные превращения углеводородов. В качестве примера можно привести каталитический риформинг один из важнейших современных нефтехимических процессов, с помощью которого осуществляется глубокое изменение углеводородного состава бензинов. Каталитический риформинг позволяет получать в широких масштабах ароматические углеводороды — бензол, толуол, ксилолы. Они образуются в этом процессе путем нескольких реакций дегидрирования шестичленных нафтенов, Сз-дегидроциклизации алканов в алкилциклопентаны с последующей дегидроизомеризацией и, наконец, Се-де-гидроциклизации алканов. Этот и другие подобные производственные процессы возникли в результате чисто технологических разработок. Однако сейчас пути технологических и фундаментальных исследований постепенно сближаются. Эта тенденция дает определенный положительный эффект. Так, исследование механизма и кинетических закономерностей каталитических реакций углеводородов, а также использование опыта, накопленного при эксплуатации нескольких поколений моно- и биметаллических катализаторов риформинга, позволило создать ряд высокоэффективных и экономичных разновидностей процесса риформинга. [c.257]

    Обычно ароматические углеводороды получаются дегидрированием циклогексанов циклопентаны подвергаются изомеризации в циклогексапы и затем дегидрированию в ароматику изоалканы с большим количеством боковых цепей получаются в результате гидрокрекинга и изомеризации из нормальных алканов и изоалканов с одной или двумя боковыми цепями. Ароматические углеводороды также получаются в результате дегидроциклизации алканов. Эта реакция преобладает в жестких условиях процесса она очень важна при риформировании алканового сырья. [c.54]

    Данные по риформингу двух тяжелых бензинов венесуэльской и кувейтской нефтей при различных условиях процесса показывают, что получение ароматических углеводородов из нафтенового венесуэльского бензина может быть объяснено в основном дегидрированием нафтенов. С другой стороны, получение ароматики из алканового кувейтского бензина составляет от 140 до 157% от потенциально возможного количества, получаемого при конверсии нафтенов. Это доказывает, что реакция дегидроциклизации алканов имеет преимущественное значение для получения высокого выхода ароматики [164]. [c.54]

    Однако в отсутствие кислотных активных центров реакция протекает медленно. На бифункциональном катализаторе, характеризующемся наличием как окислительно-восстаяовительных, так и, кислотных активных центров, возмэжип другая схема превращений дегидрирование нормального алкана (на металле), образование карбкатиона (с участием кислотных активных центров), циклизация нона, потеря протона с выделением циклоалкена, дегидрирование циклоалкена (на металле) или в общем виде алкан— алкен—>циклоалкен->арен. При дегидроциклизации алканов обра- [c.252]

    В 1936—1937 гг. Молдавский и Камушер над окисным хромовым катализатором при 450—470 °С превратили парафиновые углеводороды в ароматические того же результата достигли Казанский и Платэ при 310 °С над платинированным углем, а Каржев, Северьянова и Снова — при 500—550 °С над меднохромовым катализатором. Эта реакция получила название дегидроциклизации алканов или Сб-дегкдроциклизации. [c.242]

    Алюмоплатиновый катализатор представляет собой окись алюминия, на которую нанесено не более 0,6% платины. Этот катализатор является бифункциональным. С точки зрения теории катализа в бифункциональных катализаторах существуют активные центры веществ, содержащие как неспаренные, так и спаренные электроны. Первые способствуют активации окислительно-восстановительных реакций. В данном случае это платина, являющаяся (так же, как и другие металлы VIII группы) типичным гидриру-ющим-дегидрирующим катализатором. Поэтому на алюмоплатиновом катализаторе развиваются реакции дегидрирования шестичленных нафтенов и дегидроциклизации алканов. Окись алюминия— вещество со спаренными электронами имеет кислотный характер. Поэтому на алюмоплатиновом катализаторе активируются реакции изомеризации, протекающие по карбоний-ионному механизму. Для усиления этой функции катализатор промотируется хлором или фтором. Б качестве промоторов, увеличивающих [c.243]

    Практически сырьем для дегидрогенизационного катализа являются не собственно цикланы, пяти- или шестичленные, а бензиновые фракции, содержащие упомянутые углеводороды. Для получения толуола путем дегидрогенизации можно использовать сравнительно широкую фракцию бензина с интервалом выкипания, например, 90,0—135,0°. Предварительно проводится изомеризация пятичленных цикланов в метилциклогексап, после чего идет каталитическая дегидрогенизация полученного метил-циклогексанового концентрата с образованием толуола. Этот процесс впервые разработан Н. И. Шуйкиным и Н. Д. Зелинским. Почти тогда же (в 1936 г.) в СССР был найден другой путь каталитического получения ароматических углеводородов из нефти (контактного) — каталитическая дегидроциклизация алканов с цепочкой Се и выше (одновременные работы Молдавского и Камушер, Казанского и Платэ, Каржева и др.). [c.233]


Смотреть страницы где упоминается термин Дегидроциклизация алканов: [c.127]    [c.208]    [c.220]    [c.222]    [c.232]    [c.257]    [c.253]    [c.256]    [c.258]    [c.244]    [c.144]   
Начала органической химии Книга первая (1969) -- [ c.545 ]

Органическая химия (1972) -- [ c.106 , c.117 ]

Органическая химия (1972) -- [ c.106 , c.117 ]

Органическая химия Издание 2 (1976) -- [ c.114 ]

Органическая химия Издание 3 (1980) -- [ c.105 , c.116 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы

Дегидроциклизация



© 2025 chem21.info Реклама на сайте