Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алканы ароматизация

    От алканов можно перейти к ароматическим углеводородам. Несколько вариантов реакции ароматизации алканов разработаны учениками Н. Д. Зелинского Б. А. Казанским и А. Ф. Плата, а также другими советскими химиками. Сущность этой реакции можно выразить схемой  [c.139]

    Второй важнейшей реакцией ароматизации, протекающей в процессе риформинга, является дегидроциклизация парафинов (алканов)  [c.120]


    Как выше указывалось, некоторые фирмы США, используя разработанные советскими учеными основы химической кинетики и катализа реакций ароматизации, в том числе каталитической дегидрогенизации цикланов и каталитической циклизации алканов и алкенов, реализовали целый ряд технологических процессов в крупном масштабе. Особенно бурное развитие промышленной ароматизации нефтяного сырья было вызвано войной 1940—1945 гг. в связи с необходимостью расширения производства высокооктановых компонентов и толуола как сырья для синтеза тротила. [c.290]

    Основными критериями для оценки катализаторов служат объемная скорость подачи сырья, выход стабильного риформата (катализата), октановое число продукта или выход ароматических углеводородов, содержание легких фракций в риформате, выход и состав газа, срок службы катализатора. При анализе работы установок, а также при выборе оптимального режима каталитического риформинга надо иметь в виду следующее платина не только выполняет свои функции (дегидрирования-гидрирования), но и защищает прилежащие кислотные центры от закоксовывания, поэтому при низком ее содержании (менее 0,3%) катализатор быстро дезактивируется при недостаточных кислотных свойствах катализатора глубина ароматизации циклопентанов мала, и в катализате риформинга содержится много н-алканов, выход его велик, но октановое число невысокое при высоких кислотных свойствах катализатора парафиновые углеводороды в условиях риформинга изомеризуются настолько быстро, что уже в начальных стадиях процесса достигается равновесие парафины изопарафины и далее идет интенсивный гидрокрекинг. Кроме того, сильная кислотная функция ускоряет изомеризацию циклогексанов в циклопентаны, и реакция, идущая по схеме [c.140]

    Процесс ароматизации бензинов не является непрерывным из-за необходимости проводить периодическую регенерацию катализатора. Максимальная продолжительность рабочего периода катализатора составляет 180—200 час. Если сырье богато алканами, ароматизацию осуществляют при давлении 15 —20 атм, [c.157]

    Таким образом, в присутствии металлических и металлоксидных катализаторов одним из наиболее вероятных путей ароматизации н-алканов является описанный выше путь последовательного дегидрирования. Однако уже в первых работах по риформингу [41] указывалось на возможность промежуточного образования циклопентанов при ароматизации н-гептана, поскольку в катализате содержалось 1,0—1,5% алкилциклопентанов. В дальнейшем этот путь ароматизации алканов, как отмечалось ранее, получил строгое экспериментальное подтверждение. [c.239]


    При неглубоком крекинге, в условиях, когда можно пренебречь вторичными реакциями полимеризации, ароматизации и др., а также влиянием продуктов крекинга на его течение, радикально-цепной процесс более прост и включает реакции зарождения радикалов, взаимодействия их с молекулами алканов и распада сложных радикалов — реакция развития цепей, составляющих цепной цикл, и, наконец, реакции обрыва цепей путем рекомбинации радикалов или захвата их стенками. Совокупность выще перечисленных реакций составляет основу первичного процесса термического радикально-цепного распада алканов. [c.5]

    Открытие ароматизации алканов на Pt/ — закономерное следствие исследований реакции гидрогенолиза циклопентанов. Действительно, Б. А. Казанским и А. Ф. Платэ [2] в продуктах гидрогенолиза бутилцикло-пентана были обнаружены арены, которые отсутствовали при аналогичных реакциях низших гомологов циклопентана. Полученные результаты привели к выводу, что в условиях опыта происходит замыкание шестичленного цикла с образованием бензольного кольца  [c.190]

    Выше уже отмечалось, что при образовании пятичленных циклов из алифатических углеводородов важная роль принадлежит газу-носителю, в атмосфере которого протекает реакция. В присутствии водорода на Pt-катализаторах-реакция изомеризации алканов состава Сб—Се успешно конкурирует с ароматизацией, причем основным путем изомеризации является Сз-дегидроциклизация с последующим гидрогенолизом пятичленного цикла. [c.226]

    На основании результатов, полученных при превращениях в токе водорода и гелия пяти изомерных гексанов и метилциклопентана сделан вывод [115], что прн отсутствии в газовой фазе водорода структурная изомеризация алканов проходит только по одному пути — в согласии с механизмом сдвига связей. В токе гелия все названные углеводороды превращаются в бензол. Энергия активации ароматизации н-гексана 42 кДж/моль, остальных углеводородов 71—84 кДж/моль. Полагают [115], что образование бензола из всех изомерных гексанов обусловлено общей лимитирующей стадией — ско  [c.226]

    Роль газа-носителя при ароматизации н-алканов (и ряда непредельных углеводородов) исследовалась также в присутствии Pd- и Rh-катализаторов [139, 140]. Особенно интересными представляются результаты, по- [c.236]

    В дальнейшем для более глубокого понимания механизма дегидроциклизации алканов в присутствии оксидных катализаторов был использован [21] кинетический изотопный метод, с помощью которого удалось исключить из приведенной выше схемы ряд стадий (2, 3, 6, 10). Так, в опытах со смесями н-гексан — циклогексан- С удельная радиоактивность циклогексана не уменьшалась, т. е. из гексана не образуется нерадиоактивный циклогексан. Это означает, что последний не является промежуточным продуктом в процессе ароматизации н-гексана. В то же время в опытах со смесями гексан — гексен- С в катализате обнаружено заметное уменьшение мольной радиоактивности гексена, что, очевидно, вызвано разбавлением меченого олефина нерадиоактивным гексеном, образующимся при дегидрировании гексана. Полученный бензол обладал большей мольной радиоактивностью, чем непрореагировавший гексен, что говорит об образовании бензола через гексен [147]. Существенным фактом является появление в катализате меченых гексадиенов (из гемсена- С). Опыты по арома- [c.238]

    В реальных условиях катализа ароматизация алканов на металлических и металлоксидных катализаторах протекает, по-видимому, по всем трем названным выше механизмам. При этом один из них может существенно преобладать в зависимости от строения исходного углеводорода, условий реакции (температура, газ-носитель), состава катализатора и пр. [c.240]

    Реакция ароматизации алканов находит при.пожение не только как метод получения ароматических углеводородов, но и как способ повышения антидетонационных свойств авиа- и автобензинов. [c.18]

    Это значит, что кокс образуется в результате вторичных реакций, т. е. при углублении крекинга. В начальных стадиях процесса преобладают первичные реакции — разложение углеводородов. При крекинге алканов долгое время не образуется ароматических углеводородов и, следовательно, кокса. Ароматизированное же сырье уже в самом начале процесса дает материал для образования кокса. Поэтому о глубине процесса можно судить по сравнительной степени ароматизации продуктов крекинга. Так, при пиролизе нефти получается относительно много ароматических углеводородов потому, что пиролиз есть одна из форм глубокого крекинга. [c.140]

    В современном промышленном способе каталитической ароматизации нефтяного сырья в основном используются реакции дегидрогенизации цикланов и циклизации (дегидроциклизации) алканов. В результате этих реакций образуется свободный водород. Последний сразу же вступает в реакции гидрогенизации непредельных углеводородов, образующихся при распаде некоторой части алканов. Таким образом,, одна из составляющих реакций этого процесса является поставщиком водорода, необходимого для другой реакции. В этом отличие рассматриваемого процесса от процесса деструктивной гидрогенизации. [c.233]


    Для жесткого риформинга характерно интенсивное протекание реакций изомеризации и гидрокрекинга алканов в первом реакторе, степень их ароматизации здесь незначительна. При дифференцировании температуры по реакторам максимальный выход изопарафинов наблюдается во второй реакционной зоне, а роль реакций гидрокрекинга в головных реакторах вследствие понижен- [c.21]

    Хотя изомеризация пентановых и гексановых фракций имеет важное промышленное значение, в процессе риформинга эти реакции не играют существенной роли, так как пентановые и гексановые фракции бензина и без риформинга имеют сравнительно высокое октановое число. Изомеризация алканов Се—Сю дает достаточно высокооктановые продукты. Хотя теоретически изомеризация алканов С должна сопровождаться существенным повышением детонационной стойкости, при практическом осуществлении процесса возникают эксплуатационные трудности вследствие одновременного протекания реакций диспропорционирования. Поэтому реакции изомеризации играют при процессах риформинга лишь подсобную роль. Например, ароматизация замещенных циклопентанов основывается на способности катализатора изомеризовать пятичленные цикланы в шестичленные. [c.185]

    Влияние температуры на процесс ароматизации. Температура процесса является решающим фактором, определяющим глубину и направленность превращения низших алканов на цеолитсодержащем катализаторе. Испытания проведены при атмосферном давлении и объемной скорости по газу 150 ч . В качестве сырья были использованы пропановая, н-бутановая и изобутановая фракции. [c.7]

    На основании полученных результатов по селективности образования продуктов превращения парафиновых фракций в зависимости от температуры можно предположить, что ароматизация низших алканов СЗ-С4 протекает через стадии дегидрирования и крекинга насыщенных молекул, олигомеризации образующихся олефинов и дегидроциклизации олигомеров. [c.8]

    Как сказано выше, каталитическая ароматизация низкооктановых лигроинов (сырья с большим содержанием алканов и пятичленных цикланов) сопровождается относительно большим отло- [c.283]

    В настоящее время хорощо известны два типа реакций каталитической дегидроциклизации углеводородов, при которых открытая цепь углеродных атомов замыкается в цикл с отщеплением водорода. Эта. открытая цепь может принадлежать либо углеводороду ряда алканов, либо являться достаточно длинной боковой цепью циклана, например алкилбензола или алкилциклопен-тана. Первым типом рассматриваемой дегидроциклизации является ароматизация, известная также как Сб-дегидроциклизации [1] по числу углеродных атомов, входящих в образующийся цикл. Вторым типом является С5-дегидроциклизация, приводящая к углеводородам с пятичленным циклом, например к циклопентанам (из алканов) или дигидроинденам (из соответствующих алкилбензолов). Различие направлений реакции основывается в ряде случаев на разных типах применяющихся катализаторов и условиях протекания реакций, наконец, на неодинаковых механизмах обсуждаемых превращений. [c.189]

    Ароматизация алканов открыта одновременно и независимо тремя группами советских исследователей под руководством Б. А. Казанского и А. Ф. Платэ [2], Б. Л. Молдавского [3] и В. И. Каржева [4]. Эти работы сразу же заинтересовали химиков разных стран и послужили в дальнейшем предметом многочисленных исследований. Были исследованы многие варианты катализаторов, изучены превращения отдельных углеводородов и искусственных смесей, сделаны определенные выводы о механизме реакции. Основные особенности этой реакции и главные ее закономерности описаны в монографиях и обзорах [5—12]. [c.189]

    Роль дегидроизомеризации алкилциклопентанов при образовании аренов специально исследовалась на примерах метил-, этил- и 1,2-диметилциклопентанов [49]. В присутствии Р1/А120з эти углеводороды дегидроизо-меризуются с образованием аренов, подвергаются гидрогенолизу в алканы и частично дегидрируются с образованием циклопентенов и циклопентадиенов. Из метилциклопентана и н-гексана образуются примерно одинаковые количества бензола. Из 1,2-диметилциклопентана выход толуола значительно ниже, а из этилциклопентана примерно в два раза выше, чем из н-гептана. Таким образом, очевидно, что алкилциклопентаны в изученных условиях (Pt/AbOa, 350—520 °С) являются промежуточными продуктами при ароматизации н-алканов. При этом несомненно следует учитывать то обстоятельство, что вклад циклопентанового пути ароматизации алканов в значительной степени зависит от применяемого катализатора (кислотность носителя, природа модификаторов, дисперсность и содержание активной металлической фазы) и условий проведения опыта (температура, газ-носитель, давление и т. д.). [c.195]

    В соответствии с классическими взглядами, ароматизация алканов на оксидных и металлических катализаторах протекает по пазным механизмам. Согласно [141, 142], на оксидах катализаторах вначале происходит дегидрирование алкана в алкен, последующая циклоизомеризация алкена в циклогексан и, наконец, дегидрирование последнего в арен. На металлических, в частности платиновых, катализаторах постулировался другой механизм алканы— -циклогексаны—варены [143, 144]. Основанием для этого явилось исследование реакционной способности 2,2- и 3,3-диметилгексанов. Одним из продуктов превращения 3,3-диметилгексана в исследованных условиях явился гел1-диметилциклогек-сан. [c.237]

    Вместе с тем Паал и Тетени [44] показали, что в присутствии некоторых металлов первичными продуктами ароматизации н-гексана также являются гексены. В дальнейшем ими было установлено [148—150], что подобно оксидным катализаторам металлические Pt и Ni образуют в ходе ароматизации н-гексана алкадиены и алкатриены, которые претерпевают последующую циклизацию и дегидрирование с образованием аренов. Одновременно с этим с помощью углеводородов, меченных показано, что ни циклогексан, ни циклогексен на стадии циклизации не образуются. К близким выводам о путях ароматизации н-алканов в присутствии Р1/А1гОз, Pt/ и Pd/AbOa пришли авторы работ [14, 18, 151]. [c.239]

    Следует, однако, отметить, что высказанные выше соображения и выводы относительно механизма ароматизации алканов на металлических и металлоксидных катализаторах нельзя считать окончательными. Результаты, приведенные в [143, 144], дают основание считать, что механизм Сб-дегидроциклизации алканов на различных Pt-катализаторах в большой мере зависит от условий проведения эксперимента и в значительной степени— от строения исходного углеводорода. Анализируя имеющиеся данные, можно сделать вывод, что ароматизация н-алканов проходит преимущественно через промежуточные стадии дегидрирования и Сб-дегидроциклизации. В то же время алканы, имеющие четвертичный атом углерода (например, 2,2- или 3,3-диметилгексаны), не могут в условиях реакции столь же легко дегидрироваться и их ароматизация хотя бы частично проходит, по-видимому, по другому механизму — через стадию образования геж-диметилциклогексана. [c.240]

    При депарафинизации на цеолитах керосино-газойлевых и дизельных фракций протекают в небольших масштабах реакции крекинга н-алканов с образованием олефинов и других углеводородов. Олефины подвергаются изомеризации, ароматизации и полимеризации [7]. Размер молекул образующихся соединений больше размера входных окон цеолита СаА, поэтому они могут быть десорбированы однсаременно с н-алканами и остаются в адсорбционных полостях цеолита, постепенно подвергаясь крекингу и дальнейшей полимеризации. В результате активность цеолитов постепенно снижается. Этому способствует также накопление в адсорбционных полостях находящихся в сырье сернистых и полярных соединений, содержащих гидроксильные, карбонильные, нитро- и аминогруппы. [c.180]

    Новые цеолитсодержащие катализаторы процессов ароматизации алканов гюзволяют осуществлять переработку низкооктановых углеводородных фракций в высокооктановые компоненты автомобильных бензинов или концентрат ароматических углеводородов. [c.100]

    Эти каталитические превращения позволяют дегидрировать нафтеновые углеводороды в ароматические. Одновременно происходит дегидрирование алканов в соответствующие алкены, эти последние циклизуются тут же в циклоалканы, и с еще большей скоростью происходит дегидрирование циклоалканов в арены. Так, в процессе ароматизации типичное превращение следующее  [c.91]

    В 1936 г. НЛ-Зелинский, БА.Казанский и А.Ф.Платэ открыш новый способ пол>-чения бензола при пропускании н-алканов над катализатором при 500°С. Сколько килограммов бензола может быть получено этим способом при ароматизации (дегидроциюпгзации)129 кг н- гексана, если выход составляет 80% от теоретического  [c.45]

    Дегидроциклизация (ароматизация, дегидри 10ва-ние алканов с образованием ароматических соединений)  [c.458]

    Исследования но химии углеводородов связаны с проблемой получения компонентов высокооктановых топлив и разработкой прощ ссов изомеризации алканов в гемизаме щенные, каталитической ароматизации углеводородов Су—Сд, деалкили-рованием над промышленными катализаторами алкенов и алканов, в т.ч. триизобутилена, диизобутилена, триптена и изооктана. Из цикла работ, посвященных изу чению свойств алюмо-силикатного катализатора, наибольший интерес представляют исследования по деполимеризации тримеров и димеров в связи с необходимостью синтеза мономеров. Подобного рода исследования в стране велись С.В. Лебедевым, а затем в течение долгого времени эта важная область была оставлена без внимания. Возобновление Р.Д. Оболенцевым работ по деполимеризации и достигнутые им результаты имели большое значение, поскольку им были выявлены пути увеличения ресурсов мономеров — изобутилена и пропилена. Обнаружена изомеризующая способность промышленных дегидрирующих и ароматизирующих катализаторов. Особый научный интерес в связи с вопросами генезиса нефти представляют исследования превращений кислородсодержащих соединений (сложных. эфиров, этиленгликоля, диоксана и др.) в присутствии природных ката.пизаторов, выполненные Р.Д. Оболенцевым. [c.194]

    Наличие в продуктах реакции ароматизации водорода и увеличение его выхода с углублением конверсии сьгрья свидетельствует о протекании реакций дегидрирования алканов и дегидроциклизации. В реакционной смеси также содержится метан, который, очевиццю, образуется в реакциях крекинга алканов Сз -С4, а также в результате реакции гидродеалкилирования получаемых ароматических углеводородов Св-Сд. [c.11]

    Это процессы каталитической ароматизации под давлением водорода (ДВД, гидроформинг, DHD и HF) и совмещенный процесс изомеризации и ароматизации над платиновым катализатором (платформинг). Реакции дегидро1 енизации цикланов и дегидроцш ли-зации алканов подробно рассматриваются дальше, в главе Избирательный катализ . [c.282]


Смотреть страницы где упоминается термин Алканы ароматизация: [c.95]    [c.208]    [c.257]    [c.137]    [c.144]    [c.158]    [c.90]    [c.42]    [c.384]    [c.183]    [c.184]    [c.22]    [c.283]   
Органическая химия Том1 (2004) -- [ c.467 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы

Ароматизация



© 2025 chem21.info Реклама на сайте