Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каландрование скорость

    Каландрование ведут по схемам, приведенным на рис. 2. Выпуск качественного полуфабриката зависит от состава резиновой смеси, правильного подбора температурных режимов разогрева и каландрования, скорости процесса, регулировки зазоров, равномерности питания каландра. [c.28]

    Величина каландрового эффекта зависит от температуры каландрования, скорости и фрикции валков, а так- [c.79]


    При условии h/R < 1 уравнение (11.8-3) позволяет теоретически оценить величину к ири известных значениях объема полимера, подаваемого на валки, диаметра валка и минимального зазора вальцов. Разделив уравнение (11.8-3) на величину минимального объема полимера получим соотношение между VIV и к, зависящее от параметра HJR (рис. 11.17). Хотя приведенное выше соотношение экспериментально не подтверждено, но Берген и Скотт [331, подробно исследовавшие распределение давления между валками при каландровании листов и вальцевании полимеров, обнаружили, что в серии опытов по вальцеванию, отличающихся только скоростью вращения валков, оба параметра, к и ра, остаются существенно постоянными . Это согласуется с выводом, который следует из уравнения (11.8-3), а именно, что скорость вращения валков не должна влиять на величины Я и ра. Тем не менее в работе нет достаточно убедительных данных, подтверждающих, что суммарный объем полимера при этом поддерживался постоянным. [c.399]

    Результаты, полученные с помощью МКЭ, находились в хорошем согласии с результатами, полученными строгим аналитическим методом как для ньютоновской, так и для неньютоновской жидкости. Полученная разница легко объяснялась недостаточной густотой сетки. Преимущество метода МКЭ становилось, однако, очевидным при анализе случаев, которые не поддаются аналитическому описанию. К ним относится, например, несимметричное каландрование. Можно представить себе два варианта несимметричного каландрования различные окружные скорости валков или различные диаметры валков. В первом случае аналитическая ньютоновская модель предсказывает, что распределение давлений будет идентично тому, которое возникает при симметричном каландровании с окружной скоростью /о = ( 1 + /а)/2. Аналогичным образом во втором случае профиль давлений оказывается идентичен профилю давлений гипотетического каландра, радиус валков которого равен Я = = Яг + Я,) 2. [c.603]

    Иначе обстоит дело в случае неньютоновской жидкости. Прежде всего наличие фрикции сильно изменяет поле скоростей и распределение скоростей сдвига в зазоре между валками. Поэтому естественно ожидать совершенно различные отклики от различных аномальных жидкостей. Пример такого отклика для степенной жидкости, у которой п = 0,25, приведен на рис. 16.9. Видно, что при отношении окружных скоростей О /и , = 20/40 максимальное давление составляет только 33 % максимального давления, развивающегося при = 40 см/с 38 % максимального давления, развивающегося при и1 = и 30 см/с (вместо 100 %, соответствующих ньютоновскому случаю) и 44 % максимального давления при = = [/г = 20 см/с. Различие в диаметре валков при одинаковых окружных скоростях оказывает не столь значительное влияние. Так, в случае каландрования одной и той же жидкости при X = 0,3, и = АО см/с и Яо = 0,01 см максимальное давление для каландра с валками одинакового диаметра д. = 30 см) составит 0,33 МПа, в то время как для каландра с валками различного диаметра йг = = 20, 2 = 40) оно будет равным лишь 0,29 МПа. [c.603]


    Трение эластомеров относительно различных твердых поверхностей играет как положительную, так и отрицательную роль. Положительную—при фрикционной передаче, фрикционных тормозах, в транспортной и ременной передачах. Отрицательную — при работе подвижных уплотнений, подшипников и т. д. В первом случае трение имеет место либо при практически неподвижном контакте, либо при малых скоростях скольжения V, не приводящих к заметному разогреву и износу. Во втором случае трение стремятся снизить применением смазочных материалов, что позволяет применять резиновые подшипники при больших скоростях. Кроме того, трение играет важную роль в процессах изготовления изделий из резины (прессование, штамповка, шприцевание, вальцевание и каландрование резиновых смесей). [c.367]

    Ленту для наложения массива толщиной 2 мм получают на трехвалковом каландре 12 при температуре валков нижнего 80 °С, среднего 85 °С и верхнего 95 °С. Ленту накладывают на колесо на станке 13 до толщины, устанавливаемой спецификациями. Скорость наложения каландрованной ленты в зависимости от типа каландра составляет 10— [c.39]

    Из питателя каландрованная резиновая смесь и прорезиненная ткань со скоростью 16,5 м/мин [c.49]

    Охлажденную массу подвергают каландрованию на двухвалковом каландре, чтобы получить сырые листы фаолита требуемой толщины и с гладкой поверхностью. Валки вращаются навстречу друг другу с одинаковой скоростью (12 об/мин). Зазор может меняться от 3 до 30 мм. Заготовку пропускают через зазор. 20 мм. Перед каждым последующим пропуском зазор уменьшают на 3—5 мм. Время каждого пропуска — 6—8 мин. [c.39]

    Заготовки для ободных лент выпускают на трехвалковом каландре в виде листов резиновой смеси шириной 315—320 м и толщиной 1,0 0,1 мм при температуре валков (°С) верхнего — 70, среднего— 65, нижнего — 50. Скорость каландрования 13—14 м/мин. После каландрования листы охлаждаются воздухом и выдерживаются не менее 30 мин. Затем их закраивают по длине на заготовки, которые пропудривают, концы промазывают клеем и стыкуют. Состыкованную заготовку (браслет) надевают на диафрагму пресса-форматора, которую предварительно смазывают глицериновой смазкой для облегчения надевания заготовки и снятия готовых ободных лент. [c.228]

    Установка обеспечивает оптимальное использование сырьевых материалов путем точного контроля процесса обрезинивания корда (его.толщины или массы единицы площади обрабатываемого материала) высокую производительность каландра (так как точные методы контроля технологического процесса позволяют увеличить скорость каландрования) незначительную продолжительность переналадки каландра сокращение отходов и брака в момент пуска и заправки каландра своевременную сигнализацию о неполадках, позволяющую принять необходимое решение. [c.48]

    Для включения автоматической системы управления достаточно набрать закодированный номер изделия на диске с цифрами. После этого запоминающее устройство ЭВМ находит в накопленном запасе и передает исполнительным органам полную информацию о положении валков, перекрещивании осей, скоростях каландрования и требованиях, предъявляемых к изделию. [c.49]

    Производительность установки составляет 60 браслетов в час при скорости каландрования 12—15 м/мин. Установка может быть использована для изготовления брекерно-протекторных браслетов и питания ими поточно-автоматизированных линий, станков второй стадии сборки или станков для совмещенной сборки легковых покрышек радиальной конструкции. Кроме того, возможна комплектация установки различными видами специализированного оборудования для изготовления брекерно-протекторных браслетов. [c.198]

    Для осуществления более точного проектного расчета таких технологических характеристик каландрования, как скорость и производительность процесса, температура материала, распорные уси- [c.150]

    Ниже приведена математическая модель процесса каландрования (листования) полимерного материала со степенной зависимостью между напряжением и скоростью сдвига  [c.151]

    Таким образом, для расчета величин распорного усилия между валками 5 и 5, расхода энергии, поля температур и производительности каландра в прессовочной области деформации при обрезинивании корда и металлокорда должны быть известны следующие величины 1) реологические константы и п 2) скорость каландрования и 3) минимальный зазор / о, который выбирается с учетом [c.159]

    Величина распорного усилия между валками непостоянна и изменяется в зависимости от физико-химических свойств и температуры обрабатываемого материала, величины зазора, скорости каландрования, величины запаса и др. Величина распорного усилия при переработке различных резиновых смесей на производственных каландрах изменяется в пределах от 30 до 70 кН/см рабочей части каландра. [c.160]

    Процессы каландрования основаны на реологических свойствах резиновых смесей смеси приобретают заданные форму и размеры в результате механических воздействий — деформаций сжатия, растяжения, сдвига и кручения при определенных температурных режимах. При этом повышается пластичность смесей и снижается их вязкость, вплоть до перехода смеси в вязкотекучее состояние. При каландровании оформление смеси происходит в зазорах между валками каландра. Температурные режимы процесса устанавливают в зависимости от свойств исходных каучуков, состава резиновой смеси и ее склонности к подвулканизации. Скорость процессов регулируют в соответствии с особенностями проводимой операции, свойствами резиновой смеси, размерами и конфигурацией получаемого полуфабриката. [c.29]


    Каландрование ведут по схемам, приведенным на рис. 3.1. Выпуск качественного полуфабриката с каландра зависит от состава резиновой смеси, правильного подбора температурных режимов разогревания и каландрования смеси, скорости процесса, регулировки зазоров, равномерности питания каландра по всей длине зазора. Применение каучуков с высокими технологическими свойствами (НКо СКИ, СКС-ЗОАРКМ), регенерата, введение в резиновую смесь ингредиентов, снижающих усадку (ПН-61П, полиэтилен, фактис, высокоструктурный техуглерод), предотвращающих прилипание к валкам каландра и придающих ей гладкую ровную поверхность (олеиновая кислота, стеарин, парафин, воски), облегчает проведение каландрования. [c.31]

    В процессе листования и обкладки толщину полуфабриката проверяют ручным толщиномером, ширину — металлической линейкой. При выходе из каландра промазанной ткани измеряют ее длину и ширину. Линейную скорость каландрования W (м/мин) определяют, измеряя длину полуфабриката, выходящего из зазора каландра в течение 1 мин по режимным часам. Выходящий с каландра материал принимают на закаточное устройство или рабочий стол и опудривают мелом или каолином. Полуфабрикат можно принимать и через прокладочный холст. Рулон промазанной ткани взвешивают на циферблатных весах. Хранят полуфабрикаты на стойках в подвешенном состоянии или на стеллаже. [c.35]

    Для получения фаолита используют РС с пониженной скоростью отверждения, чтобы избежать отверждения ее в процессе обработки на вальцах и в экструдере. Снижение скорости отверждения достигается уменьшением количества вводимого при синтезе катализатора — аммиачной воды. Смешение смолы с асбестом производится в двухлопастном смесителе. Далее следует вальцевание на обогреваемых вальцах и каландрование на двухвалковом каландре в случае получения калиброванных листов с гладкой поверхностью. [c.172]

    Конструкции каландров отличаются большим разнообразием. В четырехвалковых каландрах валки могут быть расположены вертикально, в виде букв 1, Ь или 5. Имеются также треугольные трехвалковые кордные каландры, двух-, пяти- и шестивалковые машины. При каландровании применяют высокие (до 60— 80 м/мин) скорости. [c.222]

    Теоретический анализ течения вязких неньютоновских жидкостей между валками был сделан Мак-Келви, а также Бекиным и Красовским с сотр. [1—4]. Эти авторы рассчитали (или составили расчетные номограммы и алгоритмы) профили скоростей и поля давлений в зависимости от реологических свойств каландруемого материала, геометрии и кинематики каландрования. [c.223]

Рис. 6.10. Схема распределения скоростей и деформаций при каландровании Рис. 6.10. <a href="/info/796514">Схема распределения</a> <a href="/info/16626">скоростей</a> и деформаций при каландровании
    В межвалковом зазоре каландра резиновая смесь подвергается интенсивной термомеханической обработке, которая существенно влияет на качество получаемых заготовок и характер самого процесса каландрования [16]. Эти вопросы оценки влияния тепловыделений при вязком деформировании материала, сопряженном с процессами контактной теплопередачи от нагретых валков и конвективным переносом массы, чрезвычайно сложны. Однако для рационального построения систем тепловой автоматики процесса каландрования требуется хотя бы частичное их решение. Хотя слой каландруемого материала довольно тонок (обычно 2—3 мм), но скорость его перемещения велика (порядка 0,5—1 м/с) и температурное поле в зазоре существенно неоднородно. В ряде слу- [c.233]

    Контактная электризация твердых тел наблюдается при-дроблении, размоле, просеивании, пневмотранспорте и движении в аппаратах пылевидных и сыпучих материалов в производствах искусственных и синтетических волокон, стеклопластиков, каучука, резины, фотопленок при прорезинивании тканей, каландрованни, вальцевании при использовании ременных передач и транспортных лент и т. д. Степень электризации твердых веществ зависит от нх физико-химических свойств, плотности их контакта и скорости движения, относительной влажности воздуха и др. Накопление электрических зарядов на твердых диэлектриках (степень их электризации) определяется главным образом их поверхностной и объемной электризацией. Хороша электризуются твердые диэлектрики, различные пластмассы, волокна, смолы, стеклоиатериалы, синтетические и натуральные каучуки, резины. [c.111]

    Несимметричное каландрование . Выведете уравнение распределения давления при каландровании ньютоновской жидкости между валками разного диаметра, но с одинаковой окружной скоростью. Примите те же упрощающие допущения, что и при выводе модели Гаскелла (разд. 10.5). [c.364]

    Краткое описание процесса каландрования приведено в разд. 1.1. Число валков каландра определяется особенностями перерабатываемого материала и видом изделпя. Резины обычно каландруются на двухвалковых каландрах. Четырехвалковые каландры применяют для двухсторонней обкладки ткани (рис. 16.1, а). При каландровании термопластов для получения листов с гладкой поверхностью также используют четырехвалковые каландры (рис 16.1, б и в). В последнем случае полимер проходит через три межвалковых зазора. Проходя через первый зазор, материал поступает на каландр второй зазор осуществляет дозирование полимера, а в третьем зазоре формируется каландруемый лист и происходит его калибровка и отделка [1 ]. Используются также и пятивалковые каландры с различным расположением валков. Переход каландруемого полимера с одного валка на другой осуществляется за счет подбора разности окружных скоростей, температур и полировки поверхностей валков [2]. Если окружная скорость валков одинакова, ширина листа увеличивается после каждого зазора пропорционально уменьшению толщины листа. [c.587]

    Каландрование полимеров. Ньютоновская модель Гаскелла. Каландр с одинаковыми валками диаметром 200 см и длиной 100 см работает при окружной скорости 50 см/с. Величина зазора 2Яо = 0,02 см. При этом производится пленка толщиной 0,022 см. Принимая, что ньютоновская вязкость расплава состазляет 10 Па-с, определите а) максимальное давление в зазоре б) распорное усилие в) среднее приращение температуры. [c.605]

    Непластифицированный асбонаполненный ПВХ, применяемый для изготовления линолеума, можно формовать в виде листов, экструдируя его через щелевую фильеру листовальной головки. При этом, однако, возникают следующие трудности во-первых, поливинилхлоридная композиция может подвергаться интенсивной термодест-рукции из-за сильного разогрева высоковязкого расплава во-вторых, будет происходить сильный износ корпуса и червяка экструдера, вызванный абразивными свойствами композиции и выделением агрессивных продуктов термодеструкции ПВХ (хлористый водород), повышающих интенсивность износа. Поэтому целесообразнее формовать линолеум методом каландрования, при котором удельная механическая работа, воздействующая на полимер при переработке, существенно меньше (ниже скорости сдвига, поскольку оба валка вращаются в одном и том же направлении). [c.616]

    Скорость каландрования при работе меняется в широких пределах. В момент заправки ткани скорость ее прохождения через зазор не должна превышать 3—5 м1мин после заправки каландр переводят на рабочую скорость, которая на современных обкла-дочных каландрах достигает 50—80 м1мин. Современные каландры имеют кнопочное управление, что значительно облегчает управление ими. [c.278]

    Вырезка деталей из каландрованного листа резиновой смеси производится при вращении барабана, скорость которого синхронизирована со скоростью каландра. Шлея, остающаяся после выруоки, механически возвращается на подогревательные вальцы. [c.602]

    ПЛЕНКИ ПОЛИМЕРНЫЕ, имеют толщину от неск. мкм до 0,25 мм. В зависимости от метода и условий получения м. б. неориентированными (изотропными) и ориентированными. Получ. след, способами 1) экструзией расплавов полимеров (полистирола, полиэтилена, полипропилена, хлориров. полиолефинов и других полимеров, не подвергаюптхся деструкции при переходе в вязкотекучее состояние) через фильеры со щелевыми или кольцевыми отверстиями при этом в первом случае из фильеры выходит изотропная лента бесконечной длины, к-рую вытягивают в продольном и (или) поперечном направлениях, во втором — рукав, к-рый раздувают сжатым воздухом (плоскостная ориентация) 2) из р-ров полимеров (напр., эфиров целлюлозы, гл. обр. ацетатов), к-рые через фильеру наносят на движущуюся ленту или барабан (сухое формование) либо направляют в осадит, ванну (мокрое формование) структуру и св-ва пленок регулируют скоростью испарения р-рителя, составом и т-рой ванны сформованную пленку часто пластифицируют, а затем высушивают 3) каландрованием пластифицированных полимеров (главным образом поливинилхлорида). [c.448]

    Совершенствование производства и повышение скорости каландрования были достигнуты при создании пятивалковых L-образных каландров с валками из эластичной кованой стали. Валки таких каландров устанавливают на многорядные цилиндрические подшипники. Лимитирующим размером конструкции при таком способе переработки является диаметр валков, так как при невращающемся запасе материала, исходя из условий дегазации, нельзя превышать определенный угол его входа. Это обусловленное технологией ограничение привело к созданию новых конструкций каландров. Так, в 1973 г. для изготовления пленки лувитерм впервые был построен шестивалковый каландр с так называемыми рабочими и опорными Ралками диаметром 700 и 450 мм [153, 192]. При такой комбинации диаметров валков был достигнут угол входа материала, который Примерно соответствует углу спаренных валков диаметром по 550 мм. [c.223]

    В процессе каландрования эти условия должны соблюдаться для достаточно широкого интервала скоростей сдвига и температур, которые вследствие диссипации механической энергии постоянно связаны. Практически это проявляется в существовании зависимости между величиной запаса, особенно в калибрующем (последнем) зазоре, и качеством получаемой пленки. Например, при низкой температуре запас разваливается , и движение материала приобретает хаотический характер вместо направленного движения от центра к краям. В этом случае полученная пленка имеет Мепроплавленные холодные пятна, поверхностные дефекты, известные под названиями воздушные полосы или серые полосы . Толщина пленки может быть неоднородной, а конечный продукт будет иметь участки с натяжениями, что приводит к низкой стабильности размеров и высокой усадке. Если же запас имеет высокую температуру, расплав прилипает к валкам каландра, пленку трудно снять с валков, она пузырится, появляются небольшие полосы на поверхности. [c.225]

    Таким образом, одним из наиболее важных технологических аспектов каландрования является регулирование температуры расплава. 1ело в том, что при высоких скоростях каландрования (более Ом/мин) даже в пластифицированных ПВХ композициях тепло, образующееся в расплаве в результате диссипации механической энергии, превышает тепловой поток от валка к полимеру. Учитывая большую a y валков и, как следствие этого, большую тепловую инерцию Системы их термостатирования, выход на стабильный режим зависит и [c.225]

    Установка работает следующим образом. Каландр выводят на рабочий режим и включают привод барабана 6, причем линейную скорость поверхности барабана устанавливают равной скорости каландрования. Резиновая лента 7 подается на барабан 6, где разрезается ножами на центральную ленту, идущую на. навивку, и две кр0м1ки, которые выводятся из зоны дублирования устройством 5 и возвращаются на каландр для повторного использования. [c.197]

    Вывод уравнений для определения распорного усилия при прохождении резиновой смеси между валками каландра аналогичен подобному выводу для вальцев. Приведенные в гл. 5 данные расчета скоростей движения и давления резиновой смеси в области деформации для вальцев могут быть применены для поверочного расчета процесса каландрования и расчетов каландров, хотя каландрование отличается от вальцевания главным образом тем, что резиновая смесь в первом случае через зазор проходит только один раз. Методика расчета мощности привода каландра в основном аналогична методике расчета мощности привода вальцев (гл. 5). [c.160]

    При каландровании требуется выпускать листы резиновой смеси с возможно более гладкой поверхностью и однородной толщиной по длине и ширине. Ширину и толщину (калибр) таких лцстов необходимо при этом регулировать с высокой степенью точности (до 1—2%) [2—4]. Предполагается, что смесь уже достаточно гомогенизирована и разогрета. В связи с этим в листовальном каландре скорости калибрующих валков практически одинаковы (фрикция отсутствует), поверхности валков полированы, имеются специальные устройства, обеспечивающие компенсацию деформации и прогиба валков под нагрузкой. [c.221]

    Основной реологический процесс, протекающий при каландровании вязких или аномально вязких (термопластичных) материалов,— ламинарцое вязкое течение При введении некоторых упрощений в систему уравнений, описывающих модель, оказывается возможным провести математический (гидродинамический) анализ процесса. Такой анализ, если бы он был полным, позволил бы, исходя из реологических свойств каландруемого материала, геометрии зоны контакта (радиуса валков и величины зазора) и скорости каландрования, рассчитать производительность, толщину получаемого листа, распределение,температур, распорные усилия, вращающий момент и мощность привода. [c.224]

    Трансцендентные функции д(Х ) и ф(А, ) также номографированы [2]. Таким образом, зная вязкость материала, скорость каландрования и геометрические параметры, можно приближенно рассчитывать распорные усилия и затрачиваемую мощность. [c.226]

    Уравнения (6.10) — (6.12) устанавливают связь между распорными усилиями, а также эластическим восстановлением резиновой смеси сразу после выхода из зазора валков каландра, вязкоупругими характеристиками, скоростью каландрования, начальной толщиной резинового слоя и зазором. При vxp ll=У2RAh (сравнительно малые скорости) имеем вязкое деформирование и если (высокие скорости), то Яг—/ ь т. е. должно быть пол- [c.232]


Смотреть страницы где упоминается термин Каландрование скорость: [c.588]    [c.592]    [c.605]    [c.284]    [c.101]    [c.49]    [c.35]    [c.47]    [c.232]   
Технология резины (1967) -- [ c.278 ]

Технология резины (1964) -- [ c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Каландрование

Каландрование распределения скорости



© 2024 chem21.info Реклама на сайте