Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насадочные колонны продольное перемешивание

    Эксперименты с однофазными потоками (вода и водные растворы глицерина) подтвердили, что пульсации увеличивают продольное перемешивание в колонне. В пульсационных насадочных колоннах продольное перемешивание появляется в результате турбулентности, как возникающей из-за течения жидкости через насадку, так и вызванной пульсациями. [c.136]

    ПРОДОЛЬНОЕ ПЕРЕМЕШИВАНИЕ В НАСАДОЧНЫХ КОЛОННАХ [c.181]


    Продольное перемешивание в насадочных колоннах изучали многие исследователи [101—103, 156, 171 — 186]. Условия и результаты некоторых работ представлены в табл. 9. [c.181]

    Условия и результаты исследования продольного перемешивания в насадочных колоннах [c.182]

    При исследовании [17] насадочной колонны диаметром 38 мм, длиной от 152 до 915 мм, заполненной различными насадками (шары, кольца Рашига и др.), кривые отклика на импульсный ввод трассера в поток воды регистрировали в двух сечениях. С увеличением критерия Рейнольдса от 0,1 до 1000 наблюдалось возрастание Еп от 0,2 до 10 см с и Ре—от 0,1 до 1,3. При Ке = 0,1—100 величина Еп линейно зависит от Ре, а при Не = 100—400 показатель степени у Ке падает от 1 до 0,25, после чего наблюдается излом кривой. Авторы объясняют это переходом от ламинарного режима течения к турбулентному. Заметим, что при Ке=1—400 числа Пекле весьма близки для всех испытанных типов насадок (Ре 0,8). С увеличением размера элемента насадки продольное перемешивание несколько возрастает (Ре падает). [c.184]

    В результате исследования продольного перемешивания в насадочной колонне при встречном движении двух фаз установлено [181], что коэффициент продольного перемешивания в сплошной фазе уменьшается с увеличением скорости оплошной фазы и уменьшением скорости дисперсной фазы. Такой характер изменения Еп.с связан с уменьшением поперечной неравномерности в потоке сплошной фазы при его турбулизации, вызванной увеличением скорости. При дальнейшем увеличении скорости сплошной фазы рост турбулентных пульсаций приводит к возрастанию Еп.с-К этому же приводит увеличение скорости дисперсной фазы. [c.185]

    Число Пекле для оценки продольного перемешивания жидкости в насадочной колонне при встречном потоке газа (Ре ) рекомендуют [179] определять по уравнению [c.186]

    При исследовании процесса абсорбции СОг в промышленной насадочной колонне обнаружено [180] значительное продольное перемещение газа. В насадочной колонне диаметром 250 мм изучали [177] продольное перемешивание при встречном движении воды и воздуха. Удельные расходы воды варьировали в пределах Ыв=5—20 мЗ/(м -ч), воздуха —в пределах возд= = 0—1,2 м /(м -с). Трассером служил 5%-ный раствор H I. [c.186]

    В пульсационных насадочных колоннах, где турбулентность, обусловлена не только движением жидкостей, но и их пульсацией, продольное перемешивание интенсифицируется. Влияние формы элементов насадки и способа ее укладки на продольное перемешивание изучали в работе [156]. Полученные данные, за исключением области высоких чисел Рейнольдса, не уклады- [c.187]


    О влиянии продольного перемешивания на разделяющую способность массообменных колонн можно судить по следующему примеру [230]. Для извлечения 95% бензола из газовой фазы абсорбцией легким маслом в насадочной колонне диаметром 0,5 м при противотоке фаз требуется колонна высотой 8,5 м. При наличии продольного перемешивания в газовой и жидкой фазах, характеризуемого значениями Реж = 3,6 и Рбу = 25, та же степень извлечения может быть достигнута в аппарате высотой 25 м. [c.222]

    Коэффициенты продольного перемешивания. Найдем коэффициенты продольного перемешивания для насадочной колонны с помощью следующих эмпирических уравнений [13, 14]  [c.54]

    Количественные гидродинамические характеристики насадочных колонн ниже точки инверсии. К важнейшим параметрам гидродинамической структуры потоков в насадке ниже точки инверсии относятся перепад давления в насадке, отношение скорости газа (пара) к скорости в инверсионной точке, длительность пребывания потоков в аппарате, доля эффективно используемого объема системы, степень продольного перемешивания в колонне, характер и интенсивность обменных процессов в жидкой, газообразной (паровой) фазах и т. п. [c.394]

    Для насадочных пульсационных колонн установлены три области работы смешения-отстаивания, переходная и эмульгирования [128]. Коэффициент продольного перемешивания сплошной фазы в режиме эмульгирования может быть рассчитан по уравнению [c.466]

    Отмеченные свойства системы масло-фенол, а также высокая степень дисперсности сырья в экстрактной фазе приводят в насадочных колоннах к сильно развитому продольному перемешиванию дисперсной и сплошной фаз, снижающему как эффективность колонны в целом, так и предельно достижимые удельные нагрузки. [c.24]

    Поскольку значительная часть общего количества экстрагируемого компонента извлекается в период образования капель и их коалесценции [397 можно ожидать более высокого значения эффективности колонн с ситчатыми тарелками по сравнению с насадочными и жалюзийными. Главным условием эффективной работы ситчатой тарелки является наличие подпорного слоя дисперсной фазы под тарелкой, исключающего продольное перемешивание в колонне, [c.29]

    Математические модели процесса абсорбции в насадочных абсорбционных колоннах можно разделить на две группы 1) модели без учета продольного перемешивания 2) модели- с учетом продольного перемешивания. Первая группа моделей (табл. 1П-1) предполагает наличие в колонне режима полного вытеснения по взаимодействующим фазам. . [c.239]

    Продольное перемешивание является одним из основных факторов, определяюш их статические и динамические свойства насадочных колонн, причем степень этого влияния зависит от гидродинамической обстановки в аппарате. При построении математических моделей насадочных колонн как объектов с распределенными параметрами с учетом продольного перемешивания возможны два подхода описание процесса на основе дифференциальных уравнений в частных производных второго порядка — диффузионная модель, либо приближенное представление непрерывного процесса многоступенчатым с сосредоточенными параметрами в каждой ступени — ячеечная модель. [c.244]

    Для оптимального проектирования промышленного колонного насадочного аппарата необходимо учитывать влияние продольного перемешивания в насадке на величину коэффициента массопередачи. [c.16]

    Обзоры работ по продольному перемешиванию в насадочных -.колоннах сделали Бишоф и Левеншпиль [7], а также Перкинс и Джонстон [37]. [c.129]

    Известны многочисленные исследования продольного перемешивания в насадочной колонне с единственной фазой [38—56], но, к сожалению, полученные результаты зачастую были противоречивы. [c.129]

    Явление продольного перемешивания в насадочных колоннах можно рассматривать как комбинацию следующих процессов  [c.133]

    Недостаточен теоретический уровень раздела, посвященного продольному перемешиванию в насадочных колоннах. Автор ограничивается указанием на большой разброс данных. Причина этого установлена в работах советских ученых и объясняется наличием застойных зон [131—133]. Как показало теоретическое исследование процессов перемешивания в зернистой среде [132], застойные зоны могут на порядок и более увеличивать коэффициент продольного перемешивания. В этом случае применение концентрационных импульсных возмущений не дает правильных сведений о структуре потоков. Рекомендуется использовать гидродинамические возмущения [131, 133, 134], впервые описанные в работе [135]. Однако при интенсивном движении жидкости в аппарате, в частности при пульсациях, когда наличие застойных зон исключено, продольное [c.165]

    Влияние каждого из трех перечисленных факторов на интенсивность продольного перемешивания не одинаково в колоннах различных конструкций из-за своеобразного характера формирующихся в них потоков. Так, турбулентное перемешивание в осевом ваправлении и осевая циркуляция в потоке преобладают в колоннах, в которых физические или химические процессы интенсифицируются путем сообщения взаимодействующим потокам внешней механической энергии (аппараты с механическим перемешиванием), а также в барботажных колоннах. Влияние же поперечной неравномерности преимущественно проявляется в аппаратах без механических перемешивающих устройств (распылительные колонны, насадочные колонны без пульсаций и т. п.) или в аппаратах с очень низкой интенсивностью перемешивания. Поперечная неравномерность (особенно в газовом потоке) может оказывать некоторое влияние на продольное перемешивание фаз также в барботажных колоннах. [c.24]


    Насадочные колонны, наполненные кольцами Рашига и Паля седлами Берля и подобными элементами, благодаря простоте устройства, большой удельной поверхности и порозности рабочего объема применяются в химической технологии для осушест-вления разнообразных тепло-, массообменных и химических (процессов. Эффективность этих аппаратов существенно зависит от равномерности распределения по сечению взаимодействующих потоков и их гидродинамической структуры. Этим обусловлено значительное число исследований, посвященных изучению продольного перемешивания потоков в рассматриваемых колоннах. [c.181]

    При исследовании [173] продольного перемешивания в потоках воды и воздуха при их встречном движении в насадочной колонне диаметром 100 мм со слоем насадки высотой 3,6 м. (седла Берля и кольца Рашига размером 12,7 мм) трассером для воздуха служил "Аг, а для воды— 1 (в виде раствора иодида натрия). Долю объема колонны, занимаемую жидкой фазой, определяли по ее задержке Н1а1садкой. Принимая, что Ре зависит от тех же параметров, что и задержка жидкости, для определ ания коэффициента про.долыного перемешивания в жидкой фазе предложили уравнение вида  [c.185]

    Продольное перемешивание дисперсной фазы в насадочной пульсационной колонне диаметром 150 мм, заполненной кольцами Рашига 15X15 мм, изучали в работе [182]. Колонна была снабжена верхним и нижним отстойниками, высота ее насадочной части равнялась 1700 мм. Опыты проводили с системой вода — керосин для определения влияния суммарной нагрузки по обеим [c.189]

    В насадочной колонне диаметром 150 мм, заполненной кольцами Рашига размером 15X15 мм, были определены [184] коэффициенты продольного перемешивания для сплошной фазы при встречном движении двух фаз (вода — керосин). Установлено, что Еп.с = —4 см с, причем в зависимости от удерживаюшей способности (УС) по дисперсной фазе величина Еп.с сначала падает, а затем возрастает с ростом УС. [c.190]

    Заслуживает внимания модель продольного перемешивания в распылительных колоннах, предложенная в работе [214]. Базируясь на относительной скорости капли и совместив с ней подвижную систему координат, рассматривали распылительнукэ колонну как насадочную, в которой роль насадки выполняют капли (отличие состоит в том, что капли не соприкасаются). В этом случае для сплошной фазы число Пекле, отнесенное к диаметру капли йк, определяется по уравнению [c.203]

    IX-1-6. Продольное перемешивание. Как отмечалось в разделе VI П-1, при расчетах противоточной абсорбции в насадочных колоннах обычно принимают, что и газ, и жидкость движутся поршневым потоком , в котором элементы жидкости, входящие в колонну в одно и то же время, движутся через аппарат, не опережая и не отставая друг от друга, и выходят из него также одновременно. Известно, что такое допущение об идеальном вытеснении не совсем точно отражает реальную картину и что на самом деле происходит некоторое перемешивание, или обмен местами между элементами потока, входящими в колонну не одновременно. Измерения степени перемешивания жидкости и газа проводились, например, Де Мариа и Уайтом Сэтером и Левеншпилем и Де Ваалем и Мэмереном [c.219]

    Прн построенни математических моделей насадочных колонн как объектов с распределенными параметрами с учетом продольного перемешивания также возможны два подхода описание процесса на основе дифференциальных уравнений с частными производными второго порядка — диффузионная модель или приближенное представление непрерывного процесса многоступенчатым с сосредоточенными параметрами в каждой ступени —ячеечная модель. [c.417]

    На рис. 4.10 изображена экспериментальная весовая функция насадочной колонны высотой 2.0 м и диаметром 0.15 м. Размер насадки 10X10. Параметры технологического режима плотность орошения =6725 кг/м час, нагрузка по газу 6=2038 кг/м час, линейная скорость орошения и=0,4Х Х10" м/сек, коэффициент продольного перемешивания >=3,36м /сек. По этой экспериментальной кривой была выполнена идентификация моделей № 4 и № 10. Графики весовых фзгнкций этих моделей показаны на рис. 4.10, там же изображены соответствующие им -функции. [c.259]

    Как следует из материала рассмотренной главы, применение указанной методики позволило решить ряд важных практических задач в области расчета процессов, протекающих в химико-технологической аппаратуре. Так, развит прямой метод исследования гидродинамической структуры потоков в аппаратах на основе специфических свойств неустаповивпшхся течений жидкостей и газов в насадке и пористой среде установлен характерный для насадочных колонн гидродинамический эффект, проявляющийся в наличии экстремальной зависимости статической удерживающей способности от нагрузок по фазам на аппарат созданы методики и получены расчетные формулы для определения важнейпшх гидродинамических параметров структур потоков — коэффициентов продольного перемешивания, относительных объемов проточных и застойных зон, коэффициентов обмена между проточными и застойными зонами. Результаты исследования гидродинамической структуры потоков в насадке положены в основу анализа динамики процесса абсорбции в насадочных колоннах, оценки управляемости по каналам гидродинамики и массообмена и синтеза оптимального управления этими аппаратами. [c.433]

    В настоящее время нет полных сведений о распределении времени пребывания в системах с контактом двух жидких фаз, В насадочных колоннах с движущимся вверх газо-жидкостным нотоком величи-чины Рбр по имеющимся данным, колеблются от 100 до 5% соответствующей величины для однофазного потока При противотоке жидкости и газа через кольца Рашига и двух несмешивающихся жидкостей в колонне с насадкой Ре, для жидкой фазы близко к 0,1. При потоке жидкостей сверху вниз через насадочный материал перемешивание уменьшается. По данным Крамерса и Алберды для слоя высотой 0,7 м из колец Рашига размером 10 мм значение ЛГ лежит между 10 и 20. Продольное перемешивание возрастает с уменьшением жидкостной загрузки и слабо зависит от скорости газа. [c.112]

    Кафаров, Дорохов и Шестопалов [61 подробно исследовали взаимосвязь между нагрузками колонны по обеим фазам и различными гидродинамическими параметрами, например динамической или статической удерживающей способностью колонны (см. разд. 4.10.5), продольным перемешиванием и перепадом давления (разд. 4.11). Они установили количественную связь между динамической удерживающей способностью и перепадом давления, а также зависимость статической удерживающей способности от нагрузки, изменявшейся в широком интервале. С использованием понятий эффективного и мертвого объема была выведена теоретическая модель нестационарного движения жидкости в насыпной насадке модель была использована для предварительного расчета параметров движения жидкости. Исследована также зависимость коэффициента продольного перемешивания от нагрузок по газу и жидкости, а также от физикохимических свойств жидкости. Ионас [7] проанализировал основные факторы, приводящие к продольному перемешиванию в насадочных колоннах. В своих экспериментах Тимофеев и Аэров ([65] к гл. 7) основное внимание уделили вопросам влияния диаметра колонны на эффективность разделения. [c.46]

    Как показывает опыт, тарельчатые. экстракторы более эффективны, чем полые и насадочные. Это можно объяснить тем, что в полых и насадочных экстракционных колоннах сплошная фаза движется неравномерно, поскольку и распределитель и поток движущихся капель воздействуют на сплошную фазу, приводя к неравномерному распределению скоростей ее по сечению аппарата. В результате происходит продольное перемешивание сплошной фазы, вывывающее выравнивание концентраций по длине аппарата. [c.379]

    С целью установления соответствующих зависимостей рассмотрим работу насадочной колонны с нижним питающим кубом (см. рис. 11) полученные соотношения в целом будут справедливы и для колонн других конструкций, кратко охарактеризованных выше. Пусть в начале работы колонны в ее кубе. находится Мо молей загрузки, в которой молярная доля вышекипящей примеси составляет хо. Для равномерного смачивания иасадки жидкостью колонна вначале обычно подвергается захлебыванию , после чего в ней устанавливается необходимый тепловой режим, чтобы скорости потоков ж1идкой и паровой фаз по колонне были постоянными. Избыток жидкости из ректифицирующей части при этом стекает в куб насадкой захватывается (задерживается) лишь некоторое определенное количество жидкости. Величина Ж1идкостного захвата (задержки) зависит в основном от типа и поверхности насадки, а также от скорости потоков жидкости и пара в колонне. Затем в течение некоторого времени (пусковой период) колонна работает в безотборном режиме (режим полного орошения) до достижения в ней стациона(рного состояния и лишь после этого включается система отбора части дистиллята. Время пускового периода может быть определено расчетным путем. Однако такая оценка является весьма приближенной и поэтому время пускового периода определяется экспериментально. Как показали результаты соответствующих исследований, время пускового периода можно несколько снизить, если с самого начала процесса колонна будет работать в отборном режиме. Разумеется, отбираемый при этом дистиллят по своему составу не будет отвечать составу требуемого продукта вплоть до выхода колонны к заданному стационарному состоянию, и его целесообразно во избежание потерь исходного вещества отводить в питающий куб. В результате будем иметь случай стабилизированной ректификации, для которой справедливы закономерности, характеризующие непрерывную ректификацию. Действительно, поскольку при циркуляции жидкость — пар количество вещества в колонне не изменяется, по достижении стационарного состояния будет постоянным и состав питания — образующегося в кубе колонны пара. Совершенно очевидно, что пренебрегая, как и выше, эффектом продольного перемешивания, уравнение рабочей линии колонны, работающей в стационарном состоянии, для рассматриваемого случая можно записать в виде [c.84]

    Продольное перемешивание в насадочных колоннах. Отаке с сотр. [1201 предложили безразмерное уравнение для определения коэффициента продольного перемешивания в жидкой фазе [c.436]

    Насадочные колонны, как уже отмечалось, эффективнее распылительных благодаря меньшему продольному перемешиванию и более интенсивному редиспергированию капель. Они обладают, однако, меньшей производительностью, так как значительная часть их поперечного сечения занята насадкой (кольца, седла и т. п.). Во избежание растекания капель при контакте с поверхностью насадки материал последней должен предпочтительно смачиваться сплошной фазой. Размер элемента насадки, как и в других насадочных колоннах, не должен превышать 1/8 их диаметра с целью уменьшения объема пристенного пространства и канало-образования. Одновременно следует учесть, что в экстракционных насадочных колоннах средний размер образующихся капель i/yp (следовательно, и удельная поверхность дисперсной фазы) зависит от размера элемента насадки /. При этом для каждой жидкостной системы существует критический размер элемента насадки / р, определяемый по формуле / р = 2,42 (a/g Ар) - м. [c.594]

    Многочисленные исследователи определяли увеличение скорости массопередачи в результате пульсаций. Они установили, что эффективность увеличивается более чем в три раза но сравнению с обычной насадочной колонной. Однако пульсации одновременно усиливали продольную дисперсию в колонне из-за возникающих дополнительных эффектов вынужденного обратного перемешивания. Такйм образом, пульсации приносят пользу только тогда, когда эффект от увеличения межфазной поверхности превалирует над отрицательными эффектами продольного перемешивания. [c.136]

    Тэйлор и Леонард [62] изучали возрастание дисперсии в результате пульсаций потока единственной фазы в открытых трубках, однако основные исследования продольного перемешивання в пульсационных насадочных колоннах были проведены Вермюленом и др. [45-49]. [c.136]

    Как и в случае обычных насадочных колонн, были получены экспериментальные профили концентраций для систем вода — кротоновая кислота — изодекан и вода — уксусная кислота — диизобутилкетон. Они сравнивались с рассчитанными по эксперименталь- ным данным о продольнол перемешивании. Получено хорошее согласие с моделью двухфазной одномерной диффузии, что подтверждало адекватность представления о поведении жидкости в насадочных колоннах с ее реальным поведением и возможность использования данных о продольном перемешивании для расчета процессов. [c.138]


Смотреть страницы где упоминается термин Насадочные колонны продольное перемешивание: [c.183]    [c.27]    [c.190]    [c.527]    [c.461]    [c.135]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.129 , c.132 , c.133 , c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Колонна насадочные

Перемешивание насадочных



© 2025 chem21.info Реклама на сайте