Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эксперименты с временным разрешением

    В книге изложены основы теории спектральных приборов и их устройства, а также техника спектроскопического эксперимента при исследовании видимой и близкой ультрафиолетовой областей спектра. Помимо призменных и дифракционных спектральных приборов, источников света, методов энергетических измерений и измерения длин волну в книге описаны методы и приборы интерференционной спектроскопии, спектроскопии с временным разрешением, методы исследования аномальной дисперсии и атомных спектров поглощения. Отдельная глава посвящена лазерной спектроскопии. [c.4]


    Рассмотрим основные причины возникновения неединственности решения ОКЗ [56]. Так как в реальном случае эксперимент проводится в течение ограниченного времени, то, с одной стороны, это время может оказаться недостаточно большим, чтобы определить константы скорости медленных реакций (асимптотика по малым константам), с другой — временное разрешение экспериментальных измерений может оказаться недостаточным для определения констант скорости быстрых реакций (асимптотика по большим константам) может также возникнуть ситуация, когда имеют место оба предельных случая одновременно. Достаточным условием существования единственного решения ОКЗ является возможность измерения концентраций всех компонент в любые моменты времени (в реальных условиях, как правило, измеряются концентрации стабильных продуктов). Вопросы связи единственности решения ОКЗ со свойствами матрицы производных экспериментально измеряемых компонент по константам скорости реакций рассмотрены в работе [c.160]

    Эксперименты на пикосекундной временной шкале и более короткой требуют других подходов. Световая вспышка, вызывающая возбуждение или фотолиз молекул исследуемого вещества, генерируется лазером с пассивной синхронизацией мод, оснащенным системой выделения одиночного импульса из цуга. Хотя пикосекундная импульсная спектроскопия опирается на методику двух вспышек — возбуждающей и зондирую -щей,— импульс зондирующего света обычно получается за счет преобразования части света возбуждающей вспышки, а необходимая короткая временная задержка легко достигается благодаря конечной скорости света. Зондирующий световой пучок направляется по варьируемому более длинному оптическому пути. Для абсорбционных экспериментов спектр этого излучения может быть уширен (например, ССЬ преобразует малую часть излучения лазера на неодимовом стекле с длиной волны 1060 нм в излучение в широком спектральном диапазоне). Для других диагностических методик, например КАСКР, это излучение может быть преобразовано в излучение другой частоты. Существует также ряд специализированных методик для изучения испускания света в пикосекундном диапазоне. Одна из них связана с электронным вариантом стрик-камеры. Для регистрации временной зависимости интенсивности сфокусированного пучка или светового пятна в механическом варианте стрик-камеры используется быстро движущаяся фотопленка. В электронном варианте изображение вначале попадает на фотокатод специального фотоумножителя типа передающей телевизионной трубки. Под действием линейно изменяющегося напряжения, прилагаемого к пластинам внутри трубки, образующиеся фотоэлектроны отклоняются тем сильнее, чем позже они вылетели из фотокатода. Для регистрации мест попадания отклоненных электронов может использоваться фосфоресцирующий экран с относительно длинным послесвечением, изображение на котором фотографируется или преобразуется с помощью электроники для последующего анализа. Этот метод носит название электронно-оптической хроноскопии. В альтернативном методе для изучения флуоресценции с пикосекундным временным разрешением Используется затвор, основанный на эффекте Керра (вращение плоскости поляризации света в электрическом поле), индуцируемом открывающим лазерным импульсом. В еще одном методе (флуоресцентная корреляционная спектроскопия) часть света возбуждающего импульса проходит через оптическую линию задержки и смешивается с испускаемой флуоресценцией в нелинейном кристалле (см. конец разд. 7.2.3), давая на выходе [c.203]


    Импульсы очень короткой длительности. Позволяют получать высокое временное разрешение при фотохимических экспериментах. [c.184]

    Одним из основных факторов, повлиявшим на углубление нашего понимания фотохимии, было развитие в течение нескольких последних десятилетий методов обнаружения и идентификации промежуточных продуктов фотохимических реакций. К ним относятся атомы, радикалы и ионы как первичные продукты фотолиза, возбужденные состояния этих первичных продуктов, возбужденные состояния, возникающие в первоначально поглощающем свет материале, включая триплетные, которые участвуют затем в флуоресценции, фосфоресценции и безызлучательных переходах (внутренняя конверсия и интеркомбинационная конверсия). Именно возможность изучения этих активных интермедиатов на коротких временных шкалах привела к появлению утонченных экспериментов с временным разрешением, которые рассматриваются в следующем разделе. Эксперименты с временным разрешением позволяют зондировать фотохимическую систему в заданный момент времени вскоре после поглощения кванта света, когда интересующие промежуточные продукты еще сохраняются. В этом разделе дается краткий обзор наиболее важных методик, пригодных для изучения промежуточных продуктов, с целью ввести читателей в круг обсуждаемых исследований с временным разрешением. Здесь не место для обсуждения теоретических основ спектроскопии будет лишь сделана попытка указать методики, которые могут быть с пользой применены. Одна из тем, которая многократно возникает, — это вопрос о том, как лазеры упростили более старые способы спектроскопических измерений и сделали возможными совершенно новые способы исследований. [c.194]

    Для изучения возбужденных образцов может быть использовано оптическое излучение, поскольку оптический переход в нижнее электронное состояние может происходить с достаточной интенсивностью. Поэтому флуоресценция или хемилюминесценция возбужденных соединений хорошо подходят для такого рода исследований, хотя более слабое излучение фосфоресценции ограничивает его применимость для изучения триплетных состояний органических молекул, особенно в экспериментах с временным разрешением. [c.196]

    Рассмотрим некий почти плоский объем в поперечном сечении ударной трубы, предназначенный для наблюдения за степенью химических превращений. Порции газа, ударно-сжатые в различные начальные моменты времени и, следовательно, находящиеся на разных расстояниях от фронта ударной волны, проходят последовательно через это сечение. Обычные значения пространственного и временного разрешения связаны между собой и определяются толщиной плоского слоя в сечении наблюдения и составляют 1 мм и несколько микросекунд соответственно. При экспериментах в отраженных ударных волнах можно считать, что развитие реакции измеряется в одном и том же покоящемся объеме газа, а при измерениях за падающей волной объемы реагирующего газа последовательно проходят через сечение наблюдения. [c.123]

    Временное разрешение экспериментальной установки зависит от конкретных особенностей регистрирующих приборов. Так, резонаторные устройства и микроволновые приборы имеют плохое разрешение. Характерные размеры регистрирующих элементов этих устройств в среднем составляют 5 см и более. Все же размеры микроволновых резонаторов в некоторых случаях можно уменьшить до 3 мм в высоту. Зонды Ленгмюра — Вильямса имеют диаметр около 1 мм, хотя размер экранирующего слоя может быть значительно больше. Спектроскопические приборы с f/12 обеспечивают пространственное разрешение до 0,5 мм и имеют временное разрешение порядка 10 мкс. Электрические приборы, используемые для изучения явлений ионизации, по временному разрешению приблизительно на порядок уступают фотометрическим. Тем не менее временное разрешение в диапазоне 0,1—4 мс удовлетворяет требованиям большинства экспериментальных работ. Как правило, в таких экспериментах ограничения накладываются точностью измерений, а не временным разрешением используемых приборов. [c.213]

    Кроме того, время от времени я бывал доволен своими экспериментами с бактериальными вирусами. За три месяца мы с Оле закончили серию опытов, проследив судьбу фага, когда он размножается внутри бактерии, образуя несколько сот новых вирусных частиц. Полученных данных было достаточно для вполне приличной публикации, и по обычным нормам я мог бы прекратить всякую работу до конца года, не рискуя быть обвиненным в безделье. С другой стороны, я, совершенно очевидно, нисколько не приблизился к разрешению вопроса о том, что такое ген и как он воспроизводится. И я не видел, как можно было бы это сделать, не изучив сначала химию. [c.23]

    Постоянное совершенствование и появление принципиально новой техники эксперимента, автоматизация и сочетание с ЭВМ открывают все новые возможности и перспективы применения методов. В качестве примеров достижений бурно развивающегося приборостроения в рассматриваемой области можно указать на современные импульсные фурье-спектрометры, появление техники двухмерной спектроскопии ЯМР и уже упоминавшегося множественного резонанса. Повышение чувствительности, спектрального, временного и пространственного разрешения, которое дает эта новая техника, приводит к дальнейшему расширению получаемой информации и поднятию ее на другой, более высокий уровень. Понятно поэтому, что интерес к развитию теории методов спектроскопии ЯМР и ЭПР и практическому их применению не только не ослабевает, но продолжает неуклонно расти. [c.85]

    Можно сделать некоторые замечания о сравнительных характеристиках абсорбционной и люминесцентной спектроскопии, а также спектроскопии КР. Хотя люминесцентные исследования обычно более чувствительны, чем абсорбционные, они ограничены кругом веществ, которые имеют возбужденное состояние, достаточно долгоживущее для спонтанного испускания с Л-фак-тором не более 10 с и способное эффективно конкурировать с предиссоциацией или другими безызлучательными процессами релаксации, которые экспериментатор не волен контролировать (но см. разд. 7.6). Более того, время жизни люминесценции накладывает ограничение на самую длинную временную шкалу в экспериментах с временным разрешением (около 10 с). Взаимодействие электромагнитного излучения с веществом при поглощении или комбинационном рассеянии происходит примерно в течение одного периода волны, или около с в УФ-области. Поэтому промежуточные соединения реакции могут исследоваться с фемтосекундным временным [c.197]


    Геминальная рекомбинация происходит в масштабе наносекунд, а реакции радикалов в объеме раствора происходят на гораздо больших временах. Это обстоятельство позволяет во время-разрешенных экспериментах по импульсному фотолизу или импульсному радиолизу наблюдать отдельно эффекты ХПЯ в продуктах геминальной рекомбинации и объемных реакций. Поэтому время-разрешенные эксперименты по импульсному фотолизу или анализ эффектов ХПЯ в этих условиях представляют особый интерес и дают возможность весьма детально исследовать механизм реакции и выявить элементарные стадии процесса. [c.85]

    Эти соображения по поводу выборки имеют важные практические следствия для экспериментальной импульсной спектроскопии ЯМР. Предположим, что мы хотим иметь разрешение 0,2 Гц в эксперименте с временем регистрации Л, = 5 с. Если мы наблюдаем протоны при 500 МГц, то желательно иметь ширину спектра около 5000 Гц. Следовательно, в соответствии с критерием Найквиста необходимо проводить выборку сигнала каждые 1/10000 с ( = 0,1 мс). В результате за 5 с будет получено 50000 чисел, которые нужно запомнить и для которых впоследствии нужно выполнить преобразование Фурье. На большинстве современных спектрометров можно легко обрабатывать такие массивы данных, но при выполнении двумерных экспериментов, в которых чнсло точек возрастает в квадрате, оцифровка на основе этого принципа становится немыслимой. [c.36]

    Все указанные свойства лазерного излучения нашли свое применение в современной фотохимической практике. Монохроматичность лазерного излучения, большой выбор лазерных длин волн, а также их способность перестраиваться по частоте позволяют легко настроиться на нужную длину волны. Малая расходимость лазерного излучения существенно облегчает дозиметрию и делает возможными эксперименты в многопрохо-довой кювете с облучаемым веществом. Когерентность лазерного излучения используется в ряде специальных методов анализа фотохимических продуктов, например в когерентном антистоксовом комбинационном рассеянии. Наконец, последнее свойство лазерного излучения приводит сразу к двум важным последствиям в фотохимии. Это возможность осуществления многоквантовых (многоступенчатых, многофотонных) фотохимических процессов, а также возможность исследования быстрых стадий фотохимических реакций с временным разрешением вплоть до 10 с. [c.5]

    Лазеры могут также использоваться для возбуждения в исследованиях комбинационного рассеяния света. Лазерная спектроскопия комбинационного рассеяния (КР) нашла ряд приложений в исследовании промежуточных продуктов фотохимических реакций. Высокая интенсивность и монохроматичность лазерного излучения обеспечивает методу КР чувствительность, которая недоступна с традиционными световыми источниками. Кроме того, появляется возможность изучения промежуточных соединений с временным разрешением. С перестраиваемыми лазерами становится возможной резонансная лазерная спектроскопия (РЛС). Когда длина волны излучения, возбуждающего комбинационное рассеяние, подходит к сильной полосе поглощения исследуемого образца, интенсивность КР увеличивается на шесть порядков по сравнению с обычным, нерезонансным возбуждением. Одним особенно важным вариантом лазерной спектроскопии КР является когерентная антистоксова спектроскопия комбинационного рассеяния (КАСКР), которая зависит от нелинейных свойств системы в присутствии интенсивного излучения и включает смешение нескольких волн. Высокая чувствительность получается вследствие того, что регистрация проводится скорее по люминесцентной, чем по абсорбционной методике. Паразитное рассеяние возбуждающего света ограничивает чувствительность традиционных исследований КР, но в экспериментах по КАСКР вблизи длины волны испускаемого излучения нет возбуждающего излучения, поэтому рассеянное возбуждающее лазерное излучение может быть отфильтровано. [c.197]

    Наиболее типичным методом проведения экспериментов с временным разрешением в фотохимии является метод импульсного фотолиза. Этот метод первоначально разработали Норриш и Портер в 50-е годы нашего века с целью идентификации промежуточных продуктов реакции в фотохимических системах. Стационарные концентрации промежуточных продуктов — атомов, радикалов или возбужденных соединений, — имеющиеся в стационарных условиях, обычно слишком малы для того, чтобы зарегистрировать их по спектрам поглощения. Однако при использовании импульсного источника света предельно высокой интенсивности удается получить концентрации короткожи-вущих промежуточных соединений, достаточные для спектроскопического наблюдения. Более того, по спектру оптического поглощения можно следить за изменением концентрации промежуточного соединения в зависимости от времени и получать кинетические данные, например времена жизни радикалов. Это направление спектроскопии с высоким временным разрешением часто называется кинетической спектроскопией. (Кинетическая спектроскопия может также использоваться для непрерывной регистрации концентраций подходящих реагентов и конечных продуктов в зависимости от временного интервала после световой вспышки.) С помощью информации, полученной в экспериментах по импульсному фотолизу и касающейся природы и химической активности промежуточных продуктов, были окон- [c.199]

    Выбор времени регистрации и цифрового разрешения для двух измерений является более важным аспектом задания двумерных экспериментов и требует переосмысления наших представлений о разрешении. Основная мысль, иа которую следует обратить внимание,-это то, что назначение эксперимеита состоит в разрешении индивидуальных ЛН1ШЙ в спектре правильнее сказать, корреляций между группами линий, представляющими интерес. Это положеиие станет гораздо яснее, еслн вы вспомните, что эксперимент OSY следует сравнивать с гомоядерной развязкой. Под понятием разрешение по Vj для серии гомоядерных развязок следует подразумевать ту степень селективности облучения, которая вызывает четко различимые изменения в какой-либо части спектра. Эго, возможно, составит величину порядка 40-50 Гц н более, так что даже плохо оцифрованный двумерный эксперимент с разрешением 10 Гц на точку имеет заметное преимущество перед своим одномерным конкурентом. Действительно, неудачные попытки различить кросс-пики редко бывают обусловлены низким уровнем оцифровки эксперимента OSY, при этом более сложные вопросы связаны с чувствительностью н с тем, может ли быть зарегистрирован кросс-пик, связанный с константой, заслуживающей особого внимания. [c.299]

    Сопоставление экспериментальных результатов с различными возможными выражениями для константы скорости диссоциации, полученными с помощью простой модели, позволяет сделать несколько фундаментальных выводов. Квазистационарный режим реакции, как правило, достигается за время, меньшее времени разрешения экспериментальной установки. Предквази-стационарный режим наблюдается только при очень высоких температурах для нескольких двухатомных молекул. Во всех других случаях распад происходит с не зависящей от времени константой скорости ее не следует путать с константой, характерной для окончательного приближения к химическому равновесию, когда с диссоциацией начинает конкурировать рекомбинация. В области малых давлений переходы между низкими колебательными уровнями несущественны и скорость реакции определяется переходами между уровнями, лежащими вблизи энергетического порога реакции. В противном случае надо было бы ожидать совершенно иных температурных зависимостей констант скоростей по сравнению с теми, которые фактически наблюдались в эксперименте. Эффективное узкое горло диссоциации может смещаться в пределах нескольких колебательных уровней, лежащих неподалеку от энергетического порога реакции, но должно располагаться вблизи энергии диссоциации Ео. Установлено, что в области высоких давлений иногда лимитирующими являются медленные внутримолекулярные процессы, например запрещенные электронные переходы. Однако чаще всего скорость реакции определяется процессом перехода через конфигурацию активированного комплекса при значительных удлинениях разрываемой связи. Более полное рассмотрение этого вопроса дано в разд. 1.8. [c.61]

    Окружение ароматических углеводородных канцерогенов, ин-теркалировашых в ДИК, изучалось методом классического ( еш-фотол иза. Будущие эксперименты с лучшим временным разрешением помогут получить новую информацию о возбужденных состояниях комплексов углеводородов с ДИК- [c.232]

    Эксперименты на миллисекундной и микросекундной временных шкалах дают информацию о скоростях бимолекулярных реакций фотолитических фрагментов и возбужденных состояниях, а также о фосфоресценции (испускании света при переходе из триплетного возбужденного состояния). В нано-секундных экспериментах можно исследовать флуоресценцию, испускаемую при переходе из нижнего синглетного возбужденного состояния, а также интеркомбинационную конверсию. Измерения с пикосекундным разрешением дают кинетические данные о геминальной рекомбинации, обмене энергией, колебательной релаксации и более медленных процессах внутренней конверсии и изомеризации. Начинают появляться сообщения об исследованиях в фемтосекундном диапазоне. Следует помнить, что за одну фемтосекунду свет проходит расстояние лишь в 300 нм или порядка одной длины волны Эксперименты на этой временной шкале касаются процесса поглощения света и самых ранних стадий превращения энергии, вызывающего химические и физические изменения вещества. [c.204]

    Введенве. До сих пор мы рассматривали параметры, используемые при выборке в основном в терминах времени. Ширшта спектра определяет интервал между измерениями сигнала, а требуемое разрешение-общую продолжительность выборки. Это удобно при постановке эксперимента, поскольку измерения проводятся во временнбй области. Однако после преобразования данных более естественным становится проанализировать эти параметры в терминах частот. Если мы обозначим интервал между точками выборки данных в частотном спектре через цифровое разрешение), то получим [c.41]

    Но предполагавшиеся выше условия выполняются далеко не всегда. Гораздо вероятнее, что наше Т будет значительно меньше Т2, в свою очередь Т2 может быть меньше 7 , и, будучи ограничены во времени, мы заинтересованы в таком времени выборки, чтобы получить спектр с плохим разрешением, но без потери сигиалов (т.е. А, = Т ). Почти все двумерные эксперименты и многие одномерные эксперименты по наблюдению гетероядер производятся в этих условиях. Повторение прохождений с 7 < Т2 приводит к появлению стационарного эха [14], поскольку существующая к моменту следующего импульса поперечная намагниченность рефокусируется во время прохождения. Анализ такой ситуации слишком сложен, чтобы приводить его здесь (см. работы [14, 15]). На практике можно получить следующие результатьг [c.237]

    Когда мы проводим двумерный эксперимент, нам необходимо задать диапазон изменения ij и величину приращения между отдельными значениями (инкремент) ty. Более подробно этот вопрос мы обсудим ниже, но сейчас я хотел бы отметить, что оцифровка интервалов /у полностью аналогична оцифровке обычиых ССИ. Таким образом мы используем понятие ширины спектральной полосы (которая определяется диапазоном ожидаемых частотных модуляций в течение времени ,) для того, чтобы определить инкремент в соответствии с критерием Найквиста. Мы также используем понятие цифрового разрешения для определения общего объема выборки данных по этой временнбй координате. Прн этом мы сразу сталкиваемся с серьезными практическими проблемами. Вспомним пример из гл. 2, в котором мы оцифровывали протонщлй спектр с рабочей частотой 500 МГц, занимающий область химических сдвигов 10 м. д. Для того чтобы получить цифровое разрешение 0,2 Гц на точку, необходимо использовать время выборки [c.265]

    Для описанных раньше фазочувствнтельных экспериментов отпадает необходимость сильного улучшения разрешения и вычисления магнитуды, и поэтому уже только по одной этой причине их использование, если оно возможно, оказывается более предпочтительным. Кроме того, как мы увидим ниже, когда сравним свойства этих экспериментов, из спектров фазочувствительного OSY можно извлечь больше информации. Тем не менее большинство имеющихся к настоящему времени в литературе спектров получено в режиме магнитуды, и вы можете убедиться, что имеющийся у вас спектрометр или система обработки данных вьшуждают вас работать с этим типом спектров. [c.292]

    Цифровое разрешение для каждого нз этих экспериментов составляет 3,9 Гц на точку по v, и 1 Гц на точку по Vj. Отметим, что цифровое разрешение по совсем не столь плохое и может быть еще дополнительно улучшено ценой небольшой потери времени. Это обычно наиболее продуктивный путь в тех случаях, когда требуется детальное разрешение мультиплетной структуры. При этом разрешение по Vj требуется делать настолько высоким, чтобы можно было различить скоррелированные мультиплеты, а затем брать сечения по координате Vj для их детального анализа. Использование столь сильно различающихся уровнен оцифровки по Vj и Vj оказывается эффективным прн учете как фактора времени, так и чувствительности. Однако это служит препятствием для разумного использования популярного искусственного [c.304]

    Идеальными были бы времена регистрации, в несколько раз большие, чем величины Т , однако при этом потребуется много инкрементов по при небольшой ширине спектра по этой координате. Самыми широкими мультиплетами у протонночлязанных углеродов являются квартеты, возникающие для метильных групп. Имея в виду, что прямая КССВ не превышает 200 Гц, нам может потребоваться оцифровать диапазон спектра в 600 Гц (для эксперимента с импульсами по протонам). Это означает, что инкремент по должен быть около 0,8 мс. Чтобы получить время регистрации по хотя бы 10 с, мы должны, таким образом, сделать более тысячи прохождений. Это редко удается, так как частота повторения эксперимента определяется временами для С и поэтому оказывается достаточно малой. Чувствительность также будет низкой, поскольку многие эксперименты необходимо проводить с большими значениями следовательно, время регистрации по У2 должно быть не меньше чем Т , даже если меньшие значения давали бы приемлемое разрешение по этой координате. Одновременное вьшолне-ние двух этих условий приводит к очень большим массивам данных. [c.378]

    Практическое решение этой проблемы становится возможным при использовании миникомпьютеров. При этом спектральная область оцифровывается, т. е. разбивается на конечное число каналов, так что во время регистрации спектра с нормальной скоростью соответствующее число экспериментальных точек считывается и записывается в память. При повторении эксперимента можно просуммировать 50 и более индивидуальных спектров. Поскольку сигналы, обусловленные случайным шумом, изменяются по интенсивности и, что более важно, по знаку, а истинный сигнал ЯМР всегда дает положительный отклик, то отношение сигнал/шум улучшается. В соответствии с отмеченной корреляцией между временем наблюдения 1 и интенсивностью улучшение оказывается пропорциональным л/п, где п — число прохождений спектра (рис. П1. 10). В настоящее время доступны устройства с 1024 (и более) каналами, что в целом позволяет достичь достаточно высокого разрешения оцифрованного спектра. Подобный прибор известен под назва- [c.74]


Смотреть страницы где упоминается термин Эксперименты с временным разрешением: [c.268]    [c.24]    [c.179]    [c.185]    [c.198]    [c.207]    [c.236]    [c.292]    [c.92]    [c.489]    [c.494]    [c.7]    [c.159]    [c.331]    [c.343]    [c.64]    [c.155]    [c.202]    [c.236]    [c.279]   
Основы и применения фотохимии (1991) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Фемтосекундное временное разрешение в экспериментах

Шаг временной



© 2025 chem21.info Реклама на сайте