Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиты зависимость свойств от концентраци

    Выщелачивание огарка производится в отработанном кислом электролите (замкнутый процесс). Эта операция позволяет разделить компоненты огарка между раствором и остатком от выщелачивания. В зависимости от концентрации кислоты и температуры выщелачивания, а также свойств отдельных окислов распределение каждого из компонентов между раствором и остатком [c.270]


    Для выщелачивания огарка используют отработанный кислый электролит (замкнутый процесс). Эта операция позволяет разделить компоненты огарка между раствором и остатком от выщелачивания. В зависимости от концентрации кислоты и температуры выщелачивания, а также от свойств отдельных оксидов распределение каждого из компонентов между раствором и остатком может быть различным. В остатке от выщелачивания находится обычно основная часть свинца, кальция, магния, алюминия в виде сульфатов и оксидов, а также диоксид кремния и феррит цинка (при содержании кислоты в отработанном электролите до 100 г/л), половина всей меди, золото и серебро. [c.385]

    Титрационные ячейки, применяемые в кулонометрическом титровании, могут иметь различную конструкцию и размеры в зависимости от концентрации н свойств определяемых веществ и применяемых титрантов. Однако во всех случаях ячейка должна обеспечивать а) электролитический контакт вспомогательного генераторного электрода с титруемым раствором б) исключение перехода электролита из изолированной камеры в общую массу титруемого раствора в) надежный контроль за ходом титрования г) тщательное размешивание электролита в камере рабочего генераторного электрода д) быстрое удаление из титруемого раствора кислорода, а также герметичность и возможность работ в инертной атмосфере (при определениях с участием легко окисляющихся веществ) е) возможно более однородное поле между вспомогательным и рабочим генераторными электродами. Электролит в ячейке размешивают с помощью магнитной мешалки или обычных мешалок, приводимых в движение моторчиками, питаемыми от сети. [c.42]

    Мищенко с сотрудниками [114, 444] показали, что при теоретическом рассмотрении зависимости свойств растворов электролитов от их концентрации необходимо различать две концентрированные области. В первой имеется избыток свободной воды (Н20)р+< и (HgO) , не вошедшей в ионные гидраты во второй же вся наличная вода входит в гидратные сферы и при дальнейшем внедрении ионов возникает недостаток молекул растворителя. Последнее приводит к конкуренции за растворитель, в результате чего начинается его перераспределение в пользу иона, обладающего большей энергией гидратации. В первой области поведение растворителя изменено (по сравнению с таковым для чистого растворителя) присутствием ионов. Во второй области [от границы полной сольватации (ГПС) до насыщения] уже следует говорить об электролите и влиянии на него присутствующего растворителя. Структурные особенности растворов второй области связаны со структурой кристаллов растворенных веществ и по этой причине нами не рассматриваются. [c.175]


    Очевидно, что в зависимости от условий (концентрация раствора, его температура, свойства растворителя) один и тот же электролит может относиться к разным группам. 3>то принципиально важное обстоятельство позволяет строго рассчитывать количественные термодинамические характеристики электролитов. [c.76]

    Полуколлоидами называют водные растворы мыл и других моющих средств, некоторых красителей, таннидов и алкалоидов, а также углеводородные растворы мыл с поливалентными катионами. Эти системы по своим свойствам являются промежуточными между истинными растворами и коллоидами в зависимости от условий вещество в них может находиться либо в истинно-растворенном состоянии, либо в коллоидном. Для перехода из одного состояния в другое необходимо лишь изменить температуру раствора, его концентрацию, pH или ввести электролит. [c.153]

    Из Электролитов I и II получают покрытия, содержащие 5— 10% Си, а из электролита III — покрытия с 40-45% Си. С увеличением концентрации меди в электролите на 1 г/л ее содержание в сплаве понижается на 3 — 4% при прочих равных условиях электролиза. Зависимость механических свойств покрытия от состава сплава дана в табл. 39. [c.203]

    Никель, как и железо, способен к пассивации. Его пассивность в отличие от железа более устойчива и может возникать на воздухе, в водных растворах щелочи и при анодной поляризации. Добавка никеля к стали или чугуну обычно оказывает облагораживающее действие а черные металлы, их сплавы с никелем более стойки к коррозии. Пассивность никеля обусловлена образованием стойких окисных пленок, закрывающих поверхность металла и затрудняющих переход его ионов в раствор. В зависимости от способа пассивации строение и состав окисных пленок могут быть различны. Пассивность никеля может вызываться хемосорбцией гидроксильных или кислородных ионов иа поверхности металла, образованием его окислов и гидроокисей или других нерастворимых в данном растворе соединений. Пассивирование никеля при анодной поляризации определяется свойствами анионов электролита и сильно зависит от величины pH раствора чем больше его pH, тем скорее и полнее пассивируется металл . Пассивации способствуют также повышение анодной плотности тока, снижение температуры и наличие в растворе ионов никеля. Противоположное влияние на пассивацию никеля оказывает присутствие в электролите хлор-иона, сульфатов, карбонатов и других кислотных анионов 5 З", а также наличие примесей в металле Агрессивное действие ионов хлора и кислородсодержащих анионов проявляется тем сильнее, чем меньше концентрация щелочи. В растворах карбонатов никелевый анод нестоек. [c.212]

    В разбавленных растворах сильных электролитов и ионов в небольшой степени могут образоваться также свободные комплексы, незаряженные или с незначительным зарядом. В растворах истинных электролитов это ионные пары, удерживаемые в основном электростатическим притяжением, тогда как в растворах потенциальных электролитов— ионные пары и ковалентные молекулы или только последние. Образование ионных пар или ковалентных молекул сопровождается сокращением числа носителей заряда и закон действующих масс справедлив для обоих процессов. Поэтому они одинаково влияют на зависимость проводимости от концентрации электролита. Следовательно, по измерениям зависимости проводимости от концентрации невозможно определить, каким явлением —образованием ковалентных молекул или ионных пар — обусловлено снижение в электролите числа возможных носителей заряда. Трудно ответить на этот вопрос и при помощи методов, основанных на других свойствах растворов (например, осмотических и (потенцио-.метрических параметрах),, которые также зависят от общего электростатического взаимодействия ионов. Однако в ряде случаев два типа ионной ассоциации можно различить путем измерения оптических параметров, поскольку ковалентные связи заметно изменяют оптические свойства растворов. [c.347]

    Для анодного оксидирования титановых сплавов детали обезжиривают, протравливают в 20-процентном растворе азотной кислоты с добавкой фтористоводородной кислоты или ее кислых солей в количестве 20—30 г/л. После промывки в холодной воде детали оксидируют в щавелевокислом электролите с концентрацией щавелевой кислоты 50 г/л при 15—25° С в течение 1 ч с напряжением до 100—120 в. При этом оксидная пленка в зависимости от марок сплава приобретает различные цвета. Полученная оксидная пленка не обладает электроизоляционными свойствами и применяется для повышения антифрикционных свойств трущихся деталей и крепежа. Резьбу крепежных деталей дополнительно пропитывают коллоидно-графитной смазкой. [c.184]

    Физико-химические свойства сплава зависят от содержания в нем компонентов, поэтому важно установить влияние на состав сплава концентрации солей в электролите, pH, температуры и плотности тока. Если состав сплава сильно изменяется в зависимости от плотности тока, то на рельефной новерхности изделий, вследствие неравномерного распределения тока, осадки сплава будут различными по составу, структуре и другим свойствам. [c.49]


Рис. 96. Зависимость свойств сплава N1—Мп от концентрации в электролите сульфата марганца С цп50 (точки— крестики), к (точки—треугольники), 1 (темные кружки), pH (светлые кружки) Рис. 96. <a href="/info/1725214">Зависимость свойств сплава</a> N1—Мп от концентрации в <a href="/info/1795927">электролите сульфата</a> марганца С цп50 (точки— крестики), к (точки—треугольники), 1 (темные кружки), pH (светлые кружки)
    Коррозионное поведение металлов, а следовательно, и процессы ингибирования сильно зависят от анионного состава электролита. В этом можно убедиться, если рассмотреть данные о зависимости скорости коррозии стали, алюминия и свинца от природы и концентрации анионов, полученные автором книги совместно с Лысой и Луневым. Для стали (рис. 1,8 а) агрессивными анионами являются хлорид, нитрат и сульфат. В пределах изученных концентраций (до 1 н.) для хлорида наблюдается непрерывное увеличение скорости корроз55и С ростом кониентрации соли. Для нитрата п сульфата коррозия растет лишь до определенной концентрации, после чего начинает падать. Обычно это связывают с иадеиием концентрации кислорода в электролите. Пассивирующие свойства по отношению к стали проявляют карбонат и бикарбонат натрия. [c.26]

    Скорость коррозии металлов зависит также от концентрации солей в растворе. На рис. 35 представлена типичная кривая зависимости скорости коррозии металлов от концентрации нейтральных солей в неподвижном электролите. Иа рис. 36 показана зависимость скорости коррозии железа от концентргпиш солей, не обладающих окислительными свойствами (K I. Na I [c.73]

    Практически поступают так строят график зависимости К от с, а если речь идет об электролите, то К от ]/с. Проводят кривую через все гочки и экстраполируют ее на]/с=0. Отрезок, отсекаемый иа ординате, и будет величиной Ко. Затем делят каждое из этих значений К на Ко, получают величину коэффициентов активности Такая экстраполяция не является частным приемом. Это—единый прием, заключающийся в том, что всегда нахождению коэффициентов активности предшествует нахождение свойств растворов веществ при бесконечном разбавлении. Так как непосредственно определить свойства вещества при бесконечном разбавлении нельзя, то изучают свойства растворов при различных концентрациях и экстраполируют их на нулевую концентрацию. Как правило, для этого нужно изучать разбавленные растворы. Чем более разбавленный раствор, тем ближе К к Ко- Но следует учитывать и то обстоятельство, что чем более разбавленный раствор, тем больше ошибки эксперимента. Каждый раз приходится по-разному подходить к выбору диапазона концентраций. [c.55]

    При выборе температуры испытаний необходимо иметь в виду, что при увеличении температуры в результате изменения свойств продуктов реакций процесс коррозии может захмедлиться. Снижение скорости наблюдается при коррозии железа в нейтральном электролите при температурах выше 60°С, что обусловлено резким уменьшением концентрации кислорода в электролите. Если известна зависимость скорости коррозии металла от температуры в данном электролите, то температуру ускоренных испытаний следует выбирать на восходяшей ветви кривой. [c.32]

    Фукамащи и Терадзима [39] исследовали влияние щелочи на водородную хрупкость стали 5К-5 при цинковании в цианистых электролитах. Исходный электролит содержал гп(СН)2 58,7 г/л, МаСМ 24,5 г/л и МаОН 35 г/л. Из полученных авторами результатов видно (рис. 13), что при >к 1 и 2 а/дм с увеличением концентрации щелочи водородная хрупкость стали увеличивается . При 4 а/дм такое повышение хрупкости наблюдается только до концентрации ЫаОН 50 г/л. Рис. 13. Зависимость пласти- Увеличение содержания щелочи ческих свойств стальных образ- от 50 ДО 160 г/л практически не цов от содержания Н.аОН в влияет на механические свойства электролите при цинковад стали. Аналогичные зависимости [c.178]

    Натриевая соль динафтилметандисульфокислоты — коллоидный электролит с ароматической дифильной молекулой, в которой обе полярные сульфогруппы отделены одна от другой гидрофобным остатком динафтиламина. Технический ДНФ — это смесь продукта, Ч50-стоящего из двух молекул 2-нафталинсульфокислоты с более высокомолекулярными соединениями — от 2 до 8 нафталиновых ядер [14]. В водных растворах он образует мицеллы [15], которые содержат 20—40 дифильных молекул мицеллярный вес 31800—35550 форма мицелл близка к сферической [16]. Судя по молекулярным моделям, полимерный продукт с количеством нафталиновых ядер п = Ъ имеет сферическую форму. По данным Хаттори и Танино, которым удалось выделить все компоненты с га = 2 9, отсутствие точек перегиба на кривых зависимости натяжения от концентрации различных продуктов конденсации (рис. 3.1) свидетельствует об отсутствии мицеллообразовапия, т. е. о том, что ДНФ не является истинным поверхностно-активным веществом, как лаурилсульфат или олеат натрия. Исследование электропроводности ДНФ разного молекулярного веса различных концентраций показывает, что соединения с ге = 1 -I- 4 ведут себя как низкомолекулярные электролиты, а содержащие 5 нафталиновых ядер обладают свойствами, характерными для высокомолекулярных электролитов. [c.47]

    Свойства никелевых покрытий связаны с условиями их получения. Микротвердость осадков, формированных в сульфатных-растворах, изменяется от 1300 до 600 МПа, уменьшаясь с повышением концентрации Н3ВО3 и температуры и увеличиваясь с возрастанием концентрации N 012. Зависимость микротвердости от pH раствора имеет минимум при pH около 2. В диапазоне pH 2,5—4,5 наблюдается повышение микротвердости. Ее значение для осадков, формированных в электролите Уоттса, при указанных pH достигает 1400—1600 МПа, относительное удлинение около 30 %. Увеличение концентрации хлорид-ионов в электролите сопровождается повышением внутренних напряжений в покрытии. [c.170]

    Для получения защитно-декоративных оксидных покрытий в щавелевокислом электролите применяют растворы, содержащие 3—6% кислоты при 18—25 °С и плотности тока 2—3 А/дм . С ростом толщины оксидной пленки и соответствующим увеличением электрического сопротивления напряжение на ванне возрастает к концу электролиза до 80—100 В. Материалом катода служит сталь 12Х18Н9Т или свинец. Электролиз можно вести с применением как постоянного, так и переменного тока или с наложением переменного тока на постоянный. В последнем случае формируются оксидные пленки большей твердости и с лучшими диэлектрическими свойствами. Предложен ряд добавок в щавелевокислый электролит, которые способствуют получению покрытий большой толщины. Для защитно-декоративного оксидирования, когда толщина покрытия составляет 10—20 мкм, не следует усложнять процесс — достаточно применять электролит указанного выше состава и вести электролиз постоянным током. В зависимости от состава обрабатываемого сплава и толщины покрытия оно окрашено от желто-зеленоватого до темно-коричневого цвета. При эксплуатации электролита происходит уменьшение концентрации в нем кислоты. За 1 А-ч пропущенного электричества расходуется примерно 0,13—0,14 г С2Н2О4, что следует учитывать при корректировании раствора. Вредными примесями в нем являются хлориды — более 0,04 г/л и алюминий — более 30 г/л. [c.235]

    При исследовании [49] наводороживания стали ЗОХГСНА в электролите (3%-ный Na l, насыщенный сероводородом до pH = 1), ингибированным (концентрация 6 ммоль/л) четвертичными органическими солями замещенного аммония типа n-R-Ar-N" R R R A (где А - поверхностно-активный анион R, R , R -алкилы Аг - бензольное кольцо n-R - полярные заместители в пара положении) корреляции между эффективным зарядом на четвертичном N- атоме и защитными свойствами ингибиторов не выявлено, поскольку по-видимому изменяются одновременно физическая адсорбция и поверхностная концентрация специфически адсорбированных частиц, что автор отнес на счет действия трех основных факторов индукционного, мезомерного и стерического. В зависимости от типа заместителя R механизм ингибирования катодной реакции выделения водорода связан с блокировочным (экранирующим), активационным (кинетическим) и энергетическим ( /i) эффектами. [c.26]


Смотреть страницы где упоминается термин Электролиты зависимость свойств от концентраци: [c.82]    [c.127]    [c.45]    [c.268]    [c.229]    [c.103]    [c.86]    [c.50]    [c.47]   
Электрохимия растворов издание второе (1966) -- [ c.95 ]




ПОИСК





Смотрите так же термины и статьи:

Электролиты свойства



© 2025 chem21.info Реклама на сайте