Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время гидратной сферы

    Обмен молекул воды, координированных ионами алюминия, протекает по диссоциативному механизму. Время жизни молекул воды в гидратной сфере иона алюминия при 25 °С составляет 4,5 с. Энтальпия и энтропия активации процесса обмена воды в гидратной сфере равны 127,8 кДж/моль и 167,6 Дж/ (моль-К) соответственно [18]. [c.26]

    Они показывают, что внутренняя координационная сфера акво-комплексов этих ионов длительное время существует в виде стабильного образования. Если продолжительность активированного скачка примерно равна периоду колебания молекулы воды (1,4-10 сек), то доля акво-ионов, в гидратной оболочке которых в данный момент времени происходит по крайней мере один скачок при координационном числе N 6, равна т. е. для s" 0,9%, а для всего 3-10 %. [c.55]


    Молекулы воды, находящиеся во внутренней сфере гидратированных ионов, быстро обмениваются с молекулами свободной воды. Среднее время нахождения молекул воды в гидратной оболочке многозарядных ионов при комнатной температуре порядка 10 с, а для однозарядных ионов обмен происходит значительно быстрее. [c.184]

    Разделение тг, В и rf, на ионные вклады производится в предположении о равенстве вкладов К+ и С1 . Простые ионы, которые по значениям А5 , г (разд. З.Г) и спектральным данным (разд. З.Б) относят к структурирующим, дают положительные значения В, отрицательные <1Л и времена переориентации тг, превосходящие эти величины для чистой воды. Такие ионы, следовательно, снижают вращательную и поступательную подвижность соседних молекул воды. Термодинамические и кинетические критерии в данном случае согласуются, указывая на преобладание положительной гидратации для ионов Li+, F , OH и для большинства двух- и многозарядных ионов. Полностью ли подавляется вращение молекул воды в первичной гидратной оболочке этих ионов Некоторые данные указывают на то, что для большин-- гва ионов этого в действительности нет. Время переориентации для совершенно жесткого комплекса М2+ (Н20)6 оценивается примерно величиной 10 10с при 25 °С [26]. тг для положительно гидратирован-ных катионов, хотя и превосходит значение для чистой воды, все же далеко от этого значения. Детальный анализ [430] данных по диффузии и магнитной релаксации 19F и 1Н в водных растворах фторидов также показывает, что изменение положения одного атома Н относительно другого происходит быстрее, чем изменение положения Н относительно F. Такой же результат получен для ионов лития [432]. Наконец, времена диэлектрической релаксации т , хотя и не коррелируют точно с тг, в присутствии любых ионов уменьшаются. Можно предположить, что положительно гидратированные ионы полностью иммобилизуют молекулы воды в первой координационной оболочке по тем степеням свободы, которые определяют ориентационный вклад в диэлектрическую проницаемость. Следовательно, т относятся к более удаленным молекулам воды, которые участвуют в отрицательной гидратации. Одновременное увеличение тг для этих ионов указывает на то, что некоторые из движений, существенных для релаксации 1 Н (например, вращение вокруг оси симметрия С2 молекулы воды в структуре 3), остаются не замороженными в первичной координационной сфере, тогда как движения, определяющие переориентацию электрических диполей воды, подавляются [16]. Только в случае А1 3+ равенство времен переориентации векторов Н-Н и А1—Н указывает на жесткую сольватацию в первичной координационной сфере [432]. [c.289]


    В настоящее время можно считать доказанным, что величина коэффициента диализа определяется не только молекулярным весом вещества, находящегося в растворе, но и рядом других факторов, в частности степенью полимеризации и гидратации, формой молекулы, ее зарядом и т. д. Следовательно, диализ не может служить методом определения молекулярного веса вещества в растворе. Однако то обстоятельство, что внедрение лиганда в координационную сферу иона очень часто приводит к изменению гидратной оболочки, формы молекулы, ее заряда и т. д. (что в свою очередь может изменить величину константы диализа), позволяет применить этот метод для изучения процессов комплексообразования в растворе. В данном случае несущественно, какие изменения при внедрении нового лиганда произошли во внутренней сфере иона. Важно только, чтобы имеющиеся в распоряжении исследователя аналитические методы позволили заметить произошедшее при этом изменение скорости диализа изучаемого соединения. [c.56]

    Развитые О. Я. Самойловым [41] представления о структуре водных растворов электролитов и гидратации ионов убедительно свидетельствуют о том, что гидратные числа, найденные Робинсоном и Стоксом, в частности, в предположении об отсутствии гидратации анионов (анионы не гидратированы и не влияют на структуру воды), являются чисто абстрактным понятием, не отражающим и даже иногда искажающим существо явлений, происходящих в водных растворах электролитов. Найденная О. Я. Самойловым характеристика гидратации с помощью величин поверхностной плотности расположения молекул воды в первой координационной сфере ионов — наиболее приемлемый в настоящее время способ количественного описания этого явления. [c.54]

    Основная часть теории Маркуса посвящена работе сближения ионов на расстояние, равное сумме гидратных радиусов, и работе перегруппировки растворителя. Он предполагает, что каждый из участников реакции (т. е. металлический ион плюс гидратная оболочка) является жесткой сферой, межатомные расстояния внутри которой не меняются во время реакции. Иначе говоря, перегруппировка растворителя происходит только в окружающей среде, которая рассматривается как непрерывный диэлектрик. Изменение диэлектрической проницаемости в зависимости от напряженности поля не учитывалось и первичная гидратная оболочка рассматривалась как несжимаемая. Рассчитанные таким образом суммарные свободные энергии активации значительно меньше, чем наблюдае- [c.31]

    В качестве примера можно привести работы Цвицкого [И], Эли [12] и другие, в которых была сделана попытка связать сжатие воды в гидратной сфере ионов, характерное для водных растворов электролитов, с резким понижением теплоемкости раствора по сравнению с суммой теплоемкостей компонентов. При этом учитывались результаты исследований Бриджмена [13], констатировавшего понижение теплоемкости воды под давлением. Никаких количественных результатов получить этим путем не удалось. Во-первых, давление в гидратной сфере не могло быть вычислено с достоверностью. Во-вторых, более детальные эксперименты Бриджмена показали, что теплоемкость воды понижается только вплоть до определенного давления, а далее — повышается. Наконец, наши эксперименты по изучению температурных коэффициентов интегральных теплот растворения электролитов в водном и неводных растворителях и теплоемкостей этих растворов (см. гл. VI и IX) показали, что изменения энтальпии при сольватации ионов в воде и в неводных средах являются величинами одного порядка, т. е. взаимодействия и сжатие в первой сольватной сфере весьма близки по своей интенсивности. В то же время теплоемкости неводных растворов электролитов не меньше, а больше аддитивной суммы теплоемкостей компоненте] (см. стр. 244). Очевидно, сама предпосылка теории была неверна. [c.10]

    ЯМР растворы Mn l2, время жизни воды в гидратной сфере. [c.349]

    Все эти факты позволяют заключить, что эффект диамагнитных солей сказывается за счет изменения структуры раствора и связанной с ней подвижности молекул воды, а также изменений, вызызаехмых ими в ближайших гидратных сферах парамагнитных ионов. Однако вызываемые изменения при этом не велики, и, следовательно, колебания концентрации диамагнитных солей, возможные в процессе анализа, не могут внести дополнительные погрешности в из.меряемое в присутствии парамагнитных солей время релаксации ядер. Если же в процессе подготовки к анализу растворов использовать соли калия, то это влияние вообще полностью исключается. [c.66]

    Франк выводит уравнение Дебая и Паулинга иным способом и получает выражение не для потенциала, а для свободной энергии иона, окруженного ионной атмосферой. Затем он анализирует выводы, которые следуют из этой теории для области умеренных концентраций, если приписать диэлектрической постоянной ряд различных значений внутри сферы с радиусом, равным К, и принять неизменное значение макроскопической диэлектрической постоянной воды (78,54 при 25°) вне этой сферы. На основе своих вычислений Франк пришел к заключению, что если диэлектрическая постоянная внутри сферы с радиусом К не превосходит 25 и если ионы могут приближаться друг к другу на расстояние, равное сумме кристаллографических радиусов (7 +4-т ), то, согласно этой теории, должны получаться очень большие отрицательные отклонения от предельного уравнения Дебая и Гюккеля, что не соответствует экспериментальным результатам. Эти отклонения тем менвше, чем меньше разность между К ш а. Если ионы гидратированы и если эти гидратированные ионы представляют собой непроницаемые сферы, тогда внутри этого слоя молекул воды достигается диэлектрическое насыщение и Я = а. При этом допущении, а также с учетом уменьшения числа молекул растворителя из-за гидратации получаются положительные отклонения от экспериментальных данных. Если же допустить, что ионы гидратированы и в то же время они могут проникать сквозь гидратные оболочки противоположно заряженных ионов, тогда результаты теории могут быть приведены в соответствие с опытными данными. Эта модель, учитывающая возможность ассоциации ионов в результате их проникновения сквозь гид-ратнуто оболочку, будет более подробно рассмотрена в следующем параграфе. [c.571]


    Напряженность электрического поля у границы ( поверхности ) ионов, не превышающих по размеру ионы Сз+ и 1 , настолько велика (10 —10 В-см- ), что непосредственно примыкающие к ним молекулы воды сильно ориентированы, поляризованы и сжаты силами ион-дипольного взаимодействия ( неподвижный слой). Однако неподвижность сцепления имеет лишь условный смысл, так как молекулы воды в непосредственной близости к ионам все еще участвуют в непрерывном обмене. Среднее время пребывания молекул в первой (ближайшей) сфере можно определить из скорости обменных реакций, протекающих между этими молекулами и другими лигандами. Судя по данным Эйгена, из1мерявшего поглощение ультразвука [18], число обменивающихся в 1 с молекул составляет 0,5—9-10 для иона Ы+, 2—50-10 для иона Сз+ (в зависимости от природы лигандов) и 10 для М +. Однако в случае ионов Са + скорость обмена примерно в 1000 раз выше. Скорость обмена между молекулами воды вокруг иона, вероятно, не отличается заметно от скорости обмена с другими лигандами. Очень велико различие в скорости обмена молекул воды в первой гидратной оболочке ионов Са + и Мд + эти данные подтверждены некоторыми экспериментами по [c.80]

    Необходимо отметить некоторую специфику влияния дисперсности на свойства материалов, которые получают из сус пензий, имеющих жидкую дисперсионную срсду. В суспензиях по мере роста дисперсности увеличивается эффективный объем твердой фазы за счет сольватных (гидратных) слоев и уменьшается расстояние между частицами, благодаря чему возрас тает вероятность попадания их в сферу взаимного притяжения В то же время рост объема сольватных (гидратных) слоев с увеличением дисперсности не способствует получению плотного беспористого материала. Плотность материала возрастает прн использовании полидисперсных систем суспензий, порошков, у которых в промежутках между относительно крупными частицами располагаются мелкие. Получению плотного материала способствует агрегативная устойчивость суспензий. [c.440]

    Комплексообразование в водном растворе обычно понимается только как соединение катионов с анионами. Однако очевидно, что последнее есть частный случай координации вообще. При координации аниона к катиону из координационной сферы последнего вытесняется часть молекул гидратной воды или других групп, т. е. происходит реакция замещения. Нередко в ассоциате катион и анион могут быть разделены одним или даже двумя слоями молекул воды. Прочность связи катиона с анионом характеризуется величиной константы комплексообразования и зависит от ряда факторов, среди которых основную роль играют размеры и заряд катиона, определяющие его кислотность, а также донорные свойства аниона. Основность анионов может быть сопоставлена, исходя из их протонакцепторных свойств. Оксалат-, ацетат-, карбонат-, фосфат-ионы, которым соответствуют сравнительно плохо диссоциирующие кислоты, являются более сильными основаниями и образуют значительно более прочные комплексы с катионами, чем, например, хлорид-, нитрат и особенно перхлорат-ионы. При исследовании комплексообразования в растворах солей урана были использованы все обычные в этом случае методики спектрофотомет-рия, измерение потенциалов, исследование распределения как между водной и органической фазами, так и между раствором и ионообменными смолами. В настоящее время известно огромное число комплексных ионов урана, как анионных, так и катионных, многие из которых играют важную роль в химии урана [250]. [c.297]

    Попытки построения количественной теории окислительно-вос-становительных электродных реакций типа I были даны в работах Рендлса [1] и позднее Хаша 2]. В основу работы Хаша был положен расчет по теории абсолютных скоростей реакций. Поскольку реакции разряда Хаш считал всегда протекающими адиабатическим образом (в квантовомеханическом смысле), то, естественно, он не пользовался принципом Франка — Кондона и трансмиссионный коэффициент полагал равным единице. Как показал Хаш, для электрохимической кинетики очень важную роль играет конкретное распределение плотности электронного заряда в активированном состоянии. Этот результат является малообнадеживающим, поскольку в настоящее время не существует методов расчета электронной плотности в таких сложных системах, как активированные ионы, окруженные дипольной гидратной оболочкой. Именно по этой причине в интересных с принципиальной стороны работах Геришера [3], в которых рассматривались гетерогенные реакции типа II, не удалось получить конкретных количественных результатов, допускающих сравнение с опытом. Изучая окислительно-восстановительные реакции, протекающие на металлическом и полупроводниковом электродах, Геришер считал, что энергия активации, связанная с франк-кондоновским барьером, главным образом обусловлена смещением атомов, находящихся в первой координационной сфере иона. Хотя это представление правильно передает физическую картину, оно не привело к количественным результатам. По этой причине следует более подробно остано- [c.22]

    В работах Р. К. Мазитова [283—289] показано, что скорость молекулярного водного обмена из первой гидратной оболочки иона Мп выше скорости водородного обмена из этой же сферы. Найдены параметры, характеризующие этот обмен молекул воды времена жизни молекул легкой и тяжелой воды в первой гидратной оболочке иона равны [c.208]


Смотреть страницы где упоминается термин Время гидратной сферы: [c.182]    [c.355]    [c.80]   
Явления переноса в водных растворах (1976) -- [ c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Сфера



© 2024 chem21.info Реклама на сайте