Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наполнители электропроводящие

    По электрическим свойствам полимеры подразделяются на диэлектрики, полупроводники и электропроводящие материалы. К диэлектрикам относятся полимеры, молекулы которых не содержат легко диссоциирующих на ионы групп и сопряженных двойных связей вдоль макроцепи. Электрическая проводимость у этих полимеров при комнатной температуре не превышает 10 См/м. Для полимерных полупроводников (7=10 ч-Ч-10 См/м) характерно наличие сопряженных двойных связей или комплексов с переносом заряда. Электропроводящие полимерные материалы обычно являются композициями полимер— проводящий наполнитель. Перенос электричества в полимерных материалах может осуществляться электронами, ионами или моль-ионами. Идентификация типа носителей заряда и механизма их перемещения — весьма существенный вопрос для практических применений полимеров. Поэтому ниже рассматриваются основные представления о моделях переноса электрического заряда электронами и ионами. [c.40]


    Электропроводящие полимерные материалы (при введении электропроводящих наполнителей). могут применяться для изготовления труб, используемых при транспортировке взрывчатых веществ, огнеопасных жидкостей, различных сыпучих материалов для изготовления емкостей для хранения и перевозки взрыво- и пожароопасных веществ для изготовления листов, используемых при покрытии конвейеров и рабочих мест, где возможны электростатические помехи для изготовления вентиляторов, насосов, электронагревательных элементов и т. д. [c.442]

    Электрохимическая металлизация диэлектриков. Особенности первичной подготовки поверхности диэлектрика перед нанесением токопроводящего слоя (обезжиривание, травление), как и в случае химической металлизации, зависят от природы покрываемых изделий. Создание электропроводящего слоя перед электрохимической металлизацией осуществляют, как правило, без применения драгоценных металлов. Для этого на диэлектрик наносят окунанием или из пульверизатора органический растворитель или эпоксидную смолу, содержащие в качестве наполнителя высокодисперсные порошки металлов, т. е. [c.98]

    Использование специальных электропроводящих типов технического углерода позволяет получать резины, электропроводность которых достигает значений 10 -10 Ом м Рассматривая концентрационную зависимость электропроводности наполненных эластомеров, следует иметь в виду, что при введении наполнителя механизм электропроводности изменяется. Возможность получения резин с электропроводностью, изменяющейся в широком интервале — от значений, характерных для диэлектриков, до значений, позволяющих использовать эластомерные композиции в качестве токопроводящих материалов, обеспечивает все возрастающее применение эластомеров в электротехнике. [c.73]

    Полимерные материалы, содержащие наполнитель, проявляют электропроводящие свойства только при образовании в полимере частичками наполнителя цепочечных структур (см., напр., Наполнители резин). Последние могут возникнуть ли пь нри определенном соотношении сил взаимодействия между макромолекулами, макромолекулами и частицами наполнителя и между частицами наполнителя. При сильном взаимодействии между частицами наполнителя и между макромолекулами частицы наполнителя стремятся отделиться от последних и образовать крупные агрегаты (нроисходит комкование) при сильном взаимодействии между части ,ами наполнителя и макромолекулами каждая частица наполнителя изолируется полимерной оболочкой. В этих случаях для достижения электропроводности требуется так много наполнителя, что система утрачивает основные преимущества, присущие полимерным материалам. [c.478]


    Электропроводящие свойства лакокрасочных покрытий обусловлены образованием в полимерном связующем цепочных структур электропроводящего наполнителя. При высоких концентрациях электропроводящего наполнителя, например при введении 35— 40 % карбонила никеля, проводимость ряда полимеров соизмерима с проводимостью металла. Примером таких эмалей является ХС-928, АК-562, ХС-5132. Эмали наносят в два слоя, так чтобы общая толщина пленки составляла 100—170 мкм, [c.59]

    Количество электропроводящих наполнителей и их распределение в полимерной матрице должны обеспечить образование в композите токопроводящих мостиков. [c.28]

    Традиционный способ получения электропроводящих композиций заключается в механическом смешении расплава полимера с наполнителем. Таким способом удается получить композиции с V 10 См/м. Однако для этого приходится вводить большое количество наполнителя [до 60% (об.) металлических порошков или технического углерода], что приводит к резкому ухудшению физпко-механических свойств композиций. Новым и весьма перспективным способом получения таких композиций является впервые предположенный в работах [48, 49] метод по-лимеризационного наполнения, когда углеродонаполненная композиция получается в процессе синтеза полимера. Сущность этого метода заключается в том, что еще до процесса полимеризации на поверхность частиц углерода наносится катализатор, т. е. углерод является носителем катализатора. Для такой композиции характерно равномерное распределение наполнителя. Таким способом удалось получить композиции на основе полиэтилена и сополимеров этилена с высокими механическими показателями и с у 10 См/м. [c.73]

    Электропроводящие наполнители могут применяться в качестве одного из компонентов электропроводящих покрытий. Другими компонентами являются связующее (например, поливинилхлорид, полиэтилен, полиизобутилен, поливинилацетат и др.) и растворитель или диспергирующий агент. При различных способах нанесения покрытия (окраска, разбрызгивание, окунание, пульверизация и др.) электропроводящий наполнитель должен распределяться по поверхности так, чтобы между его отдельными частицами сохранялся устойчивый контакт. Лаки на основе чистого серебра имеют самую высокую электропроводность. Электропроводность лаков на основе сажи несколько ниже, но может быть повышена подбором соответствующего связующего. В этом отношении хорошие результаты показали полимерные связующие — полиэтилен и полиизобутилен. Высокую проводимость имеют покрытия, содержащие мелкодисперсную сажу. Например, электропроводящая краска, состоящая из 100 вес, ч. поливинилхлорида и 20 вес. ч. диоктилфталата, растворенных в 400 вес, ч. метилэтилкетона, 25 вес, ч, газовой сажи и 10 вес, ч, метилового спирта, образует покрытие с р = 20 Ом. Электропроводящее покрытие, состоящее из 60—70% фурфуролацетонового полимера, 15—20% ацетиленовой сажи, 4—5% ацетона, 5—7% фурфурола и 10—20% отвердителя (от массы фурфурола), после нанесения на поверхность полимера и отверждения образует слой с pv от 10 до 100 Ом-см. Для покрытия пластмасс нашли применение пленки на основе окиси олова. В качестве покрытий могут быть использованы также некоторые пленкообразующие полимеры с хорошими антистатическими свойствами (например, полидиметилакриламид, поливинилпентаметилфосфорамид, полиакриламид и др.). [c.442]

    Фосфорсодержащие и фторсодержащие соединения, оксид сурьмы (VI), хлоралканы ПАВ, электропроводящие наполнители (сажа, графит, порошки металлов) [c.260]

    Металлоуглеродные волокна, содержащие ферромагнитные металлы и их сплавы обладают высокой удельной намагниченностью. При формировании в магнитном поле композитов, наполненных магнитными электропроводящими Ме-УВ, происходит ориентация волокнистого наполнителя с образованием цепочечных электропроводящих структур, обеспечивающих анизотропию электрических и магнитных свойств композитов. На основе таких материалов разработаны эффективные экраны и поглотители электромагнитных волн. [c.182]

    Объектами исследований при разработке электропроводящих композиций были промышленные образцы полиэтилена и полиизобутилена. Электропроводящими наполнителями служили ацетиленовая сажа, алюминиевая пудра ПАК-3, карандашный графит и цинковая пыль. Полиизобутилен выполнял роль высокомолекулярного пластификатора [241]. [c.173]

    Как показали исследования, природа электропроводящего наполнителя оказывает большое влияние на электрические свойства композиций (рис. 83). Большинство наполнителей снижает удельное сопротивление только при концентрациях выше 40% (масс.). Такие высокие концентрации делают полимерные композиции хрупкими и непригодными для конструкционных изделий. [c.173]

    Возможно также применение обсадной колонны, изготовленной из материала с удельным электрическим сопротивлением 1—5 ом м. Такую обсадную колонну, по-видимому, можно изготовить, применяя электропроводящий наполнитель — например, графит. Основным материалом для изготовления обсадной колонны может служить стеклопластик, изготовленный с применением формальдегидных пли эпоксидных смол. Рядом отечественных предприятий изготовляются стеклопластиковые трубы для различных целей. [c.121]


    Одним из направлений модификации полипропилена являлась разработка электропроводящих и теплопроводящих композиций. Проведены исследования по созданию электропроводящих и теплопроводящих марок полипропилена путем введения дисперсных углеродных наполнителей — сажи и графита, (рис. 4.10, 4.11). Наибольшей электропроводностью обладает саже-графитонапол-ненный ПП. Частицы сажи вовлекают значительное количество по- [c.460]

    Электропроводность Г. повышается с увеличением содержания наполнителя и повышением в последнем доли графитового материала, с введением электропроводящих металлич. добавок. Г. обладают хорошей коммутацией. [c.610]

    В качестве антистатиков для пластмасс применяют поверхностно-активные вещества (ПАВ) и электропроводящие наполнители (сажа, графит, порошки металлов). [c.423]

    Второй прием заключается во введении в полимерную матрицу электропроводящих наполнителей. Ими могут служить как металлы, так и их соединения (серебро, никель, медь). Требования к таким наполнителям оптимальная дисперсность и отсутствие оксидной пленки на поверхности частиц. [c.28]

    Для эксплуатации в высокоагрессивных средах разработаны новые типы связующих для стеклопластиков, характеризующихся химической стойкостью и термостойкостью. Так, связующие на основе виннлэфирных смол обладают стойкостью к 400 видам химически агрессивных сред. Стеклопластики на этих связующих негорючи, удовлетворяют противопожарным требованиям. Разработаны стеклопластики, содержащие электропроводящий наполнитель и не накапливающие на поверхности электростатических зарядов, что позволяет применять их в нефтехимической промышленности. [c.40]

    В процессе нанесения покрытий контролируют очистку и подготовку поверхности, соблюдение технологии выполнения работ соответствие проектной толщины готового покрытия на металлической (толщиномерами МТ-ЗОН, МИП-10, МП-20Н, МТ-40НЦ) и бетонной (визуальным осмотром) поверхностях сплошность на металлической (электродефектоскопами ЭД-4 или ЛКД-1М, а на покрытиях, содержащих электропроводящие наполнители, только дефектоскопом ЛКД-1М) и бетонной поверхностях (тщательным визуальным осмотром) адгезию (методом решетчатого надреза) внешний вид (визуально на отсутствие подтеков и пропусков покрывных слоев). Количество отслаиваний армирующего материала от металлической или бетонной поверхности площадью до 20 см допускается не более двух на 1 м но ие более 10% общей площади покрытия. [c.154]

    Электропроводимость полимеров, содержащих электропроводящие наполнители, зависит от количества и характера расположения частиц наполнителя в матрице полимера, а также от контактного сопротивления между частицами. Если на контактных поверхностях отсутствует пленка диэлектрика, то величина контактного сопротивления Rk равна отношению удельного сопротивления проводника pv к радиусу контактного пятна а / к = ру/й Нели же между контактирующими частицами существует пленка диэлектрика, имеющая удельное сопротивление pviii и толщину Алл, то / ц равно [Р л—площадь соприкосновения) [c.386]

    Содержание электропроводящих наполнителей (напр, высокодисперсных Си, Ре, А1, N1, графита, сажи) в полимерах достигает неск. десятков %. Дейсгвне А., обусловленное созданием в материале токопроводящей структуры, напр, цепочечной сажевой, зависит не только от типа и кол-ва А, но и от способа его введения в материал, а также от струк-1 ры полимера. Пластмассы и резины с такими нaпoJIнитe-,тя 1и характеризуются значениями р от 0,1 Ом м ло 100 кОм м. Применяют эти А. в произ-ве трубопроводов, по к-рым транспортируют ВВ, огнеопасные жидкости, сы-п -чие материалы, а также емкостей для хранения и перевозки взрывоопасных в-в, в мед. практике и др. [c.182]

    Осн. преимущества В. л. м. перед традиц. лакокрасочными материалами малое содержание (или отсутствие) орг. р-рителей, что обусловливает меньшую пожаро- и взрывоопасность произ-ва и применения В. л. м., нх безвредность, а также существенную экономию орг. р-рителей (200-400 кг иа 1 т лакокрасочного материала) возможность нанесения на влажную пов-сть, благодаря чему исключается операция ее сушки (или обдувки) после подготовки под окраску сокращение расхода электроэнергии на вентиляцию сушильных камер. Недостатки В. л. м. относительно малая стабильность водных р-ров пленкообразователей и необходимость отверждения покрытий при высоких т-рах. Кроме того, в обычных условиях электроосаждения (без применения электропроводящих наполнителей, напр, сажи) м. б. по- [c.399]

    На формирование сетки электропроводящего наполнителя оказывает влияние и взаимодействие полимера с наполнителем. Проводящая цепная структура наполнителя образуется лишь в том случае, когда энергия взаимодействия частиц наполнителя с полимером превышает энергию взаимодействия полимер — полимер, но при условии, что на поверхности наполнителя есть участки, по которым осуществляется конта(ст, и энергия взон-модействня наполнитель наполнитель выше иергии взаимо действия наполните 1ь — полимер [c.387]

    В качестве наполнителей используют мел, каолин, тальк, двуокись титана, отожженную глину, углеродные сажи в больших количествах — до 400—700маСс. ч. на 100 масс. ч. полимера. При этом введение наполнителей не преследует цели повыщения механической прочности герметиков — их вводят либо для удешевления герметиков, либо для придания им определенных специфических свойств (диэлектрических, электропроводящих и т. д.). [c.166]

    Таким образом, изменяя содержание наполнителя, характер его распределения в полимере, уронспь взаимодействия полимер— нанолннтель, контактное сопротивление между частицами, можно в широких пределах варьировать электропроводимость наполненных композиций, превращая диэлектрик в полупроводник нли в электропроводящий материал. [c.387]

    По степени дисперсности, определяющей износостойкость наполненных вулканизатов, волокнистое углеродное вещество занимает промежуточное положение между низкодисперсными и высокодисперсными сажами. По зольности, содержанию влаги, оптической плотности бензилового экстракта и другим показателям волокнистое углеродное вещество полностью соответствует требованиям для саж, а по уровню структурированности (наличию первичных и вторичных агрегатов) имеет более высокие показатели, чем самые высокоструктурированные сажи, применяющиеся для электропроводящих полимеров. По величине электропроводности каучуковые вулканизаты с волокнистым углеродным веществом в 10 раз превосходят те же материалы с сажами в качестве наполнителя. По величине электропроводности пластики, наполненные волокнистым углеродным веществом, на 2-5 порядкоь превосходят контрольные пластики, наполненные сажей марки АГТ-70. [c.98]

    Отмечается, что композиции, содержащие полиарилат, полиэфиримид и наполнитель, технологичны для формования и предназначены для изготовления ударопрочных изделий [281]. Ценным комплексом свойств обладают стеклоармированные полиарилаты на основе 4,4 -дигидроксидифенил-2,2-пропана и смесей хлорангидридов тере- и изофталевой кислот, содержащие и минеральный наполнитель [290]. Ударопрочные композиции с улучшенными низкотемпературными свойствами, перерабатываемые на литьевой машине и применяемые для изготовления деталей автомобилей, получают на основе смесей полиарилатов с поли-алкилентерефталатами и другими полимерами [292]. Разработаны электропроводящие прозрачные полимерные композиции, синтезируемые кристаллизацией in sim хлорида тетраселентетрацена на полиарилатной матрице [299]. [c.164]

    Разработан антистатический пентапласт, представляюпщй собой полимер на основе 3,3-бис(хлорметил)оксациклобутана. Материал вбяадает высокой стойкостью к химическим агрессивным средам и органическим растворителям [251, с. 49]. В качестве электропроводящих наполнителей применялись ацетиленовая сажа, сажа ДГ-100 и графит марок АС-1 и С-1. При введении в полимер 20% ацетиленовой сажи или 30% графита удельное объемное сопротивление материала уменьшилось от (1 4)10 Ом-см до 7,6-10 Ом-см для сажи и 2-10 Ом-см для графита. В свою очередь, удельное поверхностное сопротивление композиции снижается от (1 5) 10 Ом до 6,5 X X 10 Ом для сажи и 1,7 10 Ом для графита. [c.175]

    Электропроводящие саженаполненные резины и пластмассы получа от только при иснользованни специальных сортов саж. В случае резин, напр., варьируя концентрацию сажи, электрич. сопротивление р , можпо уд1еньшить на 13 порядков. Аналогичное явление наблюдается для термо- и реактопластов, наполненных как неметаллич. электропроводящими наполнителями, так и порошками металлов. [c.478]

    РЕЗИНЫ (вулканизаты), продукты вулканизации каучука, обладающие способностью к большим обратимым (высоко-эластич.) деформациям при обычных и пониженных т-рах. Технич. Р. получают из композиций (резиновых смесей), содержащих, помимо каучука и вулканизующих агентов, ускорители и активаторы вулканизации, наполнители, пластификаторы. антиоксиданты и др. ингредиенты. Подразделяются на след. осн. группы Р. общего назначения (т-ры эксплуатации от —50 до 150 °С) теплостойкие (150—200 С и выше) морозостойкие (ниже —50 °С, иногда до —150 °С) стойкие в агрессивных средах (напр., масло- и бензостой-кие, озоностойкие). Выпускаются также диэлектрич. (кабельные), электропроводящие, радиационно-стойкие (рентгенозащитные), фрикционные и др. Р. Св-ва Р. см. в статьях [c.502]

    Пластики с частицами наполнителя малых размеров, равномерно распределеппыми по материалу, характеризуются изотропией свойств, оптимум к-рых достигается при степени наполнения, обеспечивающей адсорбцию всего объема связующего поверхностью частиц наполнителя. При повышении теми-ры и давления часть связующего десорбируется с иоверхности наполнителя, благодаря чему материал можно формовать в изделия сложных форм с хрупкими армируюпц1мн элементами. Мелкие частицы наполнителя, в зависимости от их природы, до различных пределов повышают модуль упругости изделия, его твердость, прочность при нагружении, придают ему фрикционные или антифрикционные качества (см. Антифрикционные полимерные материалы, Фрикционные полимерные материалы), теплоизоляционные, теплопроводящие или электропроводящие свойства (см. Диэлектрические свойства. Электропроводные полимерные материалы, Металлонаполненные пластики). [c.318]


Смотреть страницы где упоминается термин Наполнители электропроводящие: [c.227]    [c.181]    [c.502]    [c.182]    [c.436]    [c.436]    [c.436]    [c.437]    [c.437]    [c.438]    [c.438]    [c.184]    [c.99]    [c.256]    [c.478]   
Статическое электричество в химической промышленности изд2 (1977) -- [ c.173 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.195 ]

Энциклопедия полимеров том 1 (1972) -- [ c.5 , c.19 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.195 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.195 ]

Справочник по пластическим массам Том 2 (1969) -- [ c.457 , c.460 ]

Основы переработки пластмасс (1985) -- [ c.43 , c.44 , c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние природы электропроводящих наполнителей на свойства полимерных композиций

Влияние технологии введения электропроводящих наполнителей и переработки полимеров на проводимость композиций

Механизм действия электропроводящих наполнителей в полимерных композициях

Наполнители

Повышение эффективности электропроводящих наполнителей в полимерных композициях

Пол электропроводящий

Электропроводящие наполнители алюминиевая пудра ПАК

Электропроводящие наполнители ацетиленовая сажа

Электропроводящие наполнители графит карандашный ЗКА

Электропроводящие наполнители цинковая пыль



© 2025 chem21.info Реклама на сайте