Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликолиз аэробный

Рис. 18.4. Последовательность реакций гликолиза, его связь с аэробным окислением глюкозы, гликогенолизом, спиртовым брожением цифры в кружке обозначают номера реакций цифрой (2) — отмечены молекулы, представленные дважды в расчете на одну молекулу глюкозы Рис. 18.4. <a href="/info/2829">Последовательность реакций</a> гликолиза, его связь с <a href="/info/109221">аэробным окислением глюкозы</a>, гликогенолизом, <a href="/info/29636">спиртовым брожением</a> цифры в кружке обозначают <a href="/info/436056">номера реакций цифрой</a> (2) — отмечены молекулы, <a href="/info/679850">представленные дважды</a> в расчете на одну молекулу глюкозы

    Наряду с аэробным метаболизмом углеводов мозговая ткань способна к довольно интенсивному анаэробному гликолизу. Значение этого явления [c.633]

    Ряд культур дрожжей, в том числе Sa haromy es, в условиях недостаточного обеспечения среды кислородом и при наличии углеводов получают энергию путем анаэробного расщепления сахаров (гликолиз) при этом образуется этанол. Как только в среде появляется кислород, клетки дрожжей сразу переключаются на энергетически более выгодный аэробный метаболизм (Пастеровский эффект) и способны метаболизировать не только глюкозу, но и накопившийся в среде этанол. Усваивать этанол дрожжи могут благодаря наличию в их клетках фермента алько-гольдегидрогеназы (рис. 41). [c.106]

    Снижение скорости потребления глюкозы и прекращение накопления лактата в присутствии кислорода носит название эффекта Пастера. Впервые это явление наблюдал Л. Пастер во время своих широко известных исследований роли брожения в производстве вина. В дальнейшем было показано, что эффект Пастера наблюдается также в животных и растительных тканях, где кислород тормозит анаэробный гликолиз. Значение эффекта Пастера, т.е. перехода в присутствии кислорода от анаэробного гликолиза или брожения к дыханию, состоит в переключении клетки на наиболее эффективный и экономичный путь получения энергии. В результате скорость потребления субстрата, например глюкозы, в присутствии кислорода снижается. Молекулярный механизм эффекта Пастера заключается, по-ви-димому, в конкуренции между системами дыхания и гликолиза (брожения) за АДФ, используемый для образования АТФ. Как известно, в аэробных условиях значительно эффективнее, чем в анаэробных, происходят удаление и АДФ, генерация АТФ, а также регенерирование НАД, окисленного из восстановленного НАДН. Иными словами, уменьшение в присутствии кислорода количества и АДФ и соответствующее увеличение количества АТФ ведут к подавлению анаэробного гликолиза. [c.353]

    Следует отметить, что, если первый этап аэробного окисления углеводов — гликолиз является специфическим процессом катаболизма глюкозы, то два последующие — окислительное декарбоксилирование пирувата и ЦТК относятся к общим путям катаболизма (ОПК). После образования пирувата (Сз фрагмент) и ацетил-КоА (С2-фрагмент), образующихся при распаде не только глюкозы, но и липидов и аминокислот, пути окисления этих веществ до конечных продуктов происходят одинаково по механизму реакций ОПК. [c.261]


    Молочная кислота образуется в мышцах в анаэробных условиях и является конечным продуктом гликолиза. Количество образовавшейся молочной кислоты эквивалентно количеству распавшейся глюкозы. Установлено, что содержание молочной кислоты в крови человека и животных повышается после мышечной работы. Особенно резкое увеличение количества молочной кислоты наблюдается после усиленных мышечных упражнений. Однако уровень молочной кислоты в крови быстро снижается, так как она поглощается печенью и превращается там в гликоген. Ресинтез гликогена из молочной кислоты не может протекать самопроизвольно и осуществляется только при условии сопряжения его с окислительными процессами, дающими энергию. По данным Пастера и Мейергофа, ресинтез гликогена сопряжен с окислением некоторой части молочной кислоты до углекислого газа и воды. Основная масса молочной кислоты при этом превращается в гликоген. В настоящее время установлено, что в аэробных условиях при достаточном притоке кислорода гликогек и глюкоза окисляются через стадию пировиноградной кислоты до СОг и Н2О, минуя образование молочной кислоты (см. стр. 172). [c.254]

    В аэробных условиях конечным продуктом гликолитического расщепления является пируват и две молекулы НАДН, образовавшиеся в результате окисления двух молекул глицеральдегид-З-фосфата [реакция (6) гликолиза] последние окисляются до НАД , отдавая свои электроны в митохондриальную цепь переноса электронов (см. рис. 18.4). Таким образом, к суммарному итогу гликолиза (две молекулы АТФ) добавляется еще шесть молекул АТФ, образующихся в результате окислительного фосфорилирования. Следовательно, баланс АТФ при гликолитическом расщеплении глюкозы в аэробных условиях составляет 8 молекул АТФ, из них 2 молекулы АТФ образовались за счет субстратного, а 6 — окислительного фосфорилирования. [c.250]

    В аэробных условиях реакции гликолиза, остановившиеся на стадии образования пирувата (непосредственного предшественника лактата), составляют первую, начальную фазу деструкции углеводов, связанную далее с циклом трикарбоновых кислот. Гликолиз и цикл трикарбоновых кислот приводят к полному окислению глюкозы до СО2 и вьщелению больших количеств метаболической энергии (АТФ). [c.243]

    Гликолиз — ферментативный путь катаболизма глюкозы в живых организмах (см. Анаэробный гликолиз. Аэробный гликолиз). [c.550]

    Хотя анаэробный гликолиз быстрее, чем аэробный обмен веществ, он очень неэкономичен в расходовании топлива организма. Кроме того, образующаяся при гликолизе молочная кислота накапливается в мышцах, вызывая боль, которую вы, возможно, чувствовали, пробежав несколько лестничных пролетов. Предел времени,- в течение которого ваше тело может получать энергию в результате анаэробного гликолиза, меньше минуты. [c.450]

    Поскольку АТФ необходим для осуществления мн. процессов, требующих затраты энергии (биосинтез, совершение мех. работы, транспорт в-в и др.), О.ф. играет важнейшую роль в жизнедеятельности аэробных организмов. Образование АТФ в клетке происходит также благодаря др. процессам, напр, в ходе гликолиза и разл. типов брожения, протекающих без участия кислорода. Их вклад в синтез АТФ в условиях аэробного дыхания составляет незначит. часть от вклада О.ф. (ок. 5%). [c.338]

    Аэробный метаболизм пирувата. Этот процесс выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия окисление продукта гликолиза—пирувата. [c.319]

    В анаэробных условиях гликолиз —единственный процесс в животном организме, поставляющий энергию. Именно благодаря гликолизу организм человека и животных определенный период может осуществлять ряд физиологических функций в условиях недостаточности кислорода. В тех случаях, когда гликолиз протекает в присутствии кислорода, говорят об аэробном гликолизе .  [c.328]

    Клетки, недостаточно снабжаемые кислородом, могут частично или полностью существовать за счет энергии гликолиза. Однако больщинство животных и растительных клеток в норме находится в аэробных условиях и свое органическое топливо окисляет полностью до СО, и Н,0. В этих условиях пируват, образовавщийся при расщеплении глюкозы, не восста- [c.343]

    На первом этапе протекают реакции аэробного гликолиза, в процессе которых глюкоза расщепляется на две молекулы пирувата. Этот этап составляет начальную фазу разложения углеводов, его называют подготовительным . [c.260]

    Аэробный гликолиз протекает в жидкой фазе цитоплазмы и сопровождается накоплением сравнительно малого количества энергии (немногим более 6% от потенциально возможного). Дальнейшее окисление образовавшихся молекул пировиноградной кислоты до СОз происходит уже в специальных центрах окисления - митохондриях, представляющих собой мелкие ( 6 мкм) корпускулярные включения в цитоплазме. Окисление в митохондриях более эффективно с точки зрения накопления энергии в [c.338]


    Таким образом, в тканях, функционирующих в условиях гипоксии, наблюдается образование лактата. Это особенно справедливо в отношении скелетной мышцы, интенсивность работы которой в определенных пределах не зависит от поступления кислорода. Гликолиз в эритроцитах даже в аэробных условиях всегда завершается образованием лактата, поскольку в них отсутствуют митохондрии, содержащие ферменты аэробного окисления пирувата. [c.247]

    По содержанию ионов К и Ка цереброспинальная жидкость практически не отличается от плазмы крови. Ионов Са в ней почти в 2 раза меньше, чем в плазме крови. Содержание ионов СГ заметно выше, а концентрация ионов бикарбоната несколько ниже в цереброспинальной жидкости, чем в плазме. Таким образом, минеральный состав цереброспинальной жидкости имеет характерные особенности и отличается от такового плазмы крови. Все это дает основание считать, что проникновение веществ через мембрану сосудистого эндотелия нервной системы — активный биохимический процесс. Источниками энергии для активного транспорта служат процесс аэробного окисления глюкозы и лишь в незначительной степени гликолиз. [c.644]

    Содержание АТФ и креатинфосфата в сердечной мышце ниже, чем в скелетной мускулатуре, а расход АТФ велик. В связи с этим ресинтез АТФ в миокарде должен происходить намного интенсивнее, чем в скелетной мускулатуре. Для сердечной мышцы теплокровных животных и человека основным путем образования богатых энергией фосфорных соединений является путь окислительного фосфорилирования, связанный с поглощением кислорода. Регенерация АТФ в процессе анаэробного расщепления углеводов (гликолиз) в сердце человека практического значения не имеет. Именно поэтому сердечная мышца очень чувствительна к недостатку кислорода. Характерной особенностью обмена веществ в сердечной мышце по сравнению со скелетной является также то, что аэробное окисление веществ неуглеводной природы при работе сердечной мышцы имеет большее значение, чем при сокращении скелетной мышцы. Только 30—35% кислорода, поглощаемого сердцем в норме, расходуется на окисление углеводов и продуктов их превращения. Главным субстратом дыхания в сердечной мышце являются жирные кислоты. Окисление неуглеводных веществ обеспечивает около 65—70% потребности миокарда в энергии. Из свободных жирных кислот в сердечной мышце особенно легко подвергается окислению олеиновая кислота. [c.656]

    Анаэробная ферментация (или гликолиз), цикл лимонной кислоты и дыхательная цепь присущи всему живому на Земле вьипе уровня бактерий. Некоторые аэробные, т.е. поглощающие кислород, бактерии тоже используют этот процесс для полного окисления глюкозы или аналогичного метаболита-в диоксид углерода и воду. Другие анаэробные, т.е. непотребляющие кислород, бактерии осуществляют только ферментацию поглощение глюкозы или других богатых энергией молекул, их разрыв на меньшие молекулы, такие, как пропионовая кислота, уксусная кислота или этанол, и использование сравнительно небольших количеств высвобождаемой сво- [c.333]

    После расщепления глюкозы до молочной кислоты большая часть оставшейся в ней энергии извлекается во второй фазе процесса — в окислении лактата до СОг и НгО кислородом воздуха. Первая фаза гликолиз — анаэробное (т.,е. протекающее без участия кислорода) превращение глюкозы, вторая фаза — аэробное превращение, т.е. собственно окисление. [c.104]

    При окислительной деструкции глюкозы образуется две молекулы ацетилкофермента А, т.е. создаегся 24 биоэнергетических эквивалента. В сочетании с теми 14, которые образуются в ходе превращения глюкозы в ацетилкофермент А, аэробный гликолиз обеспечивает образование 38 макроэргических связей на одну молекулу глюкозы или 39 на один остаток глюкозы в составе гликогена или крахмала. Таким образом, аэробное окисление глюкозы с точки зрения биоэнергетики почти в 20 раз более эффективно, чем брожение. [c.361]

    I этап аэробный гликолиз [c.260]

    Осн. пути метаболизма D-Г. 1) гликолиз и аэробное окисление до Oj и HjO, в результате к-рых образуются АТФ и др. макроэргич. соединения 2) синтез олиго- и полисахаридов 3) превращение в пентозы и др. простые сахара в пентозофосфатном цикле. О биосинтезе D-Г. см. Глюконеогенез. [c.589]

    Прижизненные биохимические процессы в мышце, изучавшиеся А. В. Прлладиным, В. Энгельгардтом и М. Любимовой, Д. Фердманом, В. А. Белицером и другими советскими исследователями, связаны с физиологическим актом мышечного сокращения и заключаются в реакциях гликолиза, ресинтеза мышечного гликогена, распада и ресинтеза креатинфосфата и АТФ и изменениях сократительного белкового вещества мышцы. При этом молочная кислота, образующаяся при утомлений мышцы, в результате реакций гликолиза при отдыхе мышцы в аэробных условиях частью (около одной пятой) подвергается полному окислительному распаду, а в большей своей части превращается снова в гликоген за счет энергии реакций аэробного окисления. Одновременно с реакциями гликолиза наблюдается распад АТФ и АДФ и затем креатинфосфата, что приводит к накоплению неорганических фосфатов. При отдыхе мышцы происходит ресинтез этих соединений, требующий энергии. Таким образом, наблюдается тесная связь между реакциями анаэробного и аэробного обмена в мышце, выражающаяся в том, что в аэробных условиях в мышце анаэробный распад углеводов замедлен. [c.234]

    Состав и соотношение форм И. (спектр И.) изменяется в зависимости от их локализации в органах и тканях организмов одного вида и даже в разных субклеточных органеллах одной и той же клетки. На спектр И. оказывает влияние разное физиол. состояние организма и патологич. процессы, происходящие в нем. Поскольку И. различаются по свои.м св-вам (оптимуму pH, активации ионами, по сродству к субстратам, ингибиторам, активаторам, кофакторам), то характер их распределения отражает регуляторные механизмы, контролирующие метаболизм. Так, напр., лактатдегидрогеназа представлена в организме человека и животных пятью формами, каждая из к-рых представляет собой тетрамер, состоящий из субъединиц двух типов (а и Р) в разных соотношениях. В сердце и печени представлена в осн. форма 04, а в мышцах-Р . Первая ингибируется избытком пировиноградной к-ты и поэтому преобладает в органах с аэробным типом метаболизма, вторая не ингибируется избытком этой к-ты и преобладает в мышцах с высоким урювнем гликолиза. О важной роли И. в тонкой регуляции метаболич. процессов свидетельствует также изменение их спектра под влиянием разл. воздействий и физиол. состояний (охлаждение, гипоксия, денервация и др.). [c.202]

    Гликолиз— это последовательность десяти ферментативных реакций, в процессе которьгх в аэробных условиях глюкоза расшепляется до двух молекул пирувата (аэробный гликолиз), а в анаэробных — до двух молекул лактата (анаэробный гликолиз). Ниже приведены стехиометрические уравнения процессов анаэробного (а) и аэробного (б) гликолиза  [c.243]

    Основной путь катаболизма углеводов включает в себя гликолиз моносахаридов - О-глюкозы и В-фруктозы, источниками которых в растениях служат сахароза и крахмал. Гликолизом называют расщепление молекулы гексозы на два Сз-фрагмента (схема 11.26). В итоге образуются две молекулы пировиноградной кислоты, а выделяющаяся энергия запасается в двух молекулах АТФ, синтез которых произошел в результате так называемого субстратного фосфорилирования молекул АДФ. Для регенерирования НАД, участвующего в гликолизе, молекулы его восстановленной формы должны отдать полученные от субстрата окисления электрон и протон. В роли их акцептора в обычных для растений аэробных условиях выступает молекулярный кислород. Выделяющаяся при переносе электронов от НАДН к О2 энергия также используется для фосфорилирования АДФ, которое называют окислительным фосфорилирова-нием. Это дает дополнительно еще 4 молекулы АТФ. [c.338]

    Гликолиз. Понятие гликолиз означает расщепление глюкозы. Первоначально этим термином обозначали только анаэробное брожение, завершающееся образованием молочной кислоты (лактата) или этанола и СО,. В настоящее время понятие гликолиз используется более широко для описания распада глюкозы, проходящего через образование глю-козо-6-фосфата, фруктозобисфосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляют термин аэробный гликолиз в отлгиие от анаэробного гликолиза , завершающегося образованием молочной кислоты (лактата). [c.319]

    Как отмечалось, одна молекула НАДН (3 молекулы АТФ) образуется при окислительном декарбоксилировании пирувата в ацетил-КоА. При расщеплении одной молекулы глюкозы образуется 2 молекулы пирувата, а при окислении их до 2 молекул ацетил-КоА и последующих 2 оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление молекулы пирувата до СО, и Н,0 дает 15 молекул АТФ). К этому количеству надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 6 молекул АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН, которые образуются при окислении 2 молекул глицеральдегид-З-фосфата в дегидрогеназной реакции гликолиза. Следовательно, при расщеплении в тканях одной молекулы глюкозы по уравнению gH ,Og + 60,—>6СО, + 6Н,0 синтезируется 38 молекул АТФ. Несомненно, что в энергетическом отнощении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз. [c.349]

    Для реализации биосинтеза и метаболизма необходима энергия, запасаемая в клетках в химической форме, главным образом в экзергонических третьей и второй фосфатной связи АТФ. Соответственно метаболические биоэнергетические процессы имеют своим результатом зарядку аккумулятора — синтез АТФ из АДФ и неорганического фосфата. Это происходит в процессах дыхания и фотосинтеза. Современные организмы несут память об эволюции, начавшейся около 3,5 10 лет назад. Имеются веские основания считать, что жизнь на Земле возникла в отсутствие свободного кислорода (см. 17.2). Метаболические процессы, протекающие при участии кислорода (прежде всего окислительное фосфорилирование при дыхании), относительно немногочисленны и эволюционно являются более поздними, чем анаэробные процессы. В отсутствие кислорода невозможно полное сгорание (окисление) органических молекул пищевых веществ. Тем не менее, как это показывают свойства ныне существующих анаэробных клеток, и в них необходимая для жизни энергия получается в ходе окислительно-восстановительных процессов. В аэробных системах конечным акцептором (т. е. окислителем) водорода служит Ог, в анаэробных — другие вещества. Окисление без Oj реализуется в двух путях брожения — в гликолизе и в спиртовом брожении. Гликолиз состоит в многостадийном расщеплении гексоз (например, глюкозы) вплоть до двух молекул пирувата (пировиноградной кислоты), содержащих по три атома углерода. На этом, пути две молекулы НАД восстанавливаются до НАД.Н и две молекулы АДФ фосфоршгируются— получаются две молекулы АТФ. Вследствие обратной реакции [c.52]

    Остановимся теперь на функциях последнего этапа пути. Как механизм, обеспечивающий полную деградацию углеводов, этот путь не получил универсального распространения, хотя есть эубактерии, осуществляющие разложение углеводов в аэробных условиях только по окислительному пентозофосфатному пути. У многих организмов, использующих пентозы в качестве субстратов брожения, окислительный пентозофосфатный путь служит для превращения пентоз в гексозы, которые затем сбраживаются в гликолитическом пути. Кроме того, выще мы упоминали о двух точках пересечения этого пути с гликолизом на этапах образования 3-ФГА и фруктозо-6-фосфата. Все это говорит о тесном контакте окислительного пентозофосфатного пути с гликолизом и о возможном переключении с одного пути на другой. Наконец, помимо пентоз, образующихся на начальных этапах пути, возникновение С4- и С7-сахаров в транскетолазной и трансальдолазной реакциях также представляет определенный интерес для клетки, так как эти сахара являются исходными субстратами для синтеза ряда важных клеточных метаболитов. [c.257]

    Разложение целлюлозы в аэробных условиях приводит к последующему метаболизированию глюкозы в системе катаболиче-ких процессов (гликолиз — ЦТК) с поступлением водорода (электронов) в дыхательную цепь и переносу их на О2. [c.404]

    В аэробных условиях, когда регенерация NAD происходит в результате окисления NAD-H кислородом в цепи переноса эле <тронов, к этому скромному итогу сразу добавляется еще шесть молекул АТФ, образуюни1хся результате окислительного фосфорилирования двух молекул NAD-И. Столько же молекул АТФ образуется в результате появления еще двух молекул NAD-H при функционировании пируватдегидрогеназного комплекса. С учетом сопутствующего фосфорилирования АДФ стехиометрические уравнения для трех вариантов гликолиза можно записать в виде [c.350]

    Разделение на анаэробный и аэробный гликолиз носит условный характер, так как реакции гликолиза в присутствии кислорода и его отсутствии одни и те же. Различия касаются лишь их скорости и конечных продуктов. При недостатке кислорода реокисление НАДН, образовавшегося в ходе гликолиза, осушествляется путем сопряжения с восстановлением пирувата в лактат, а в аэробных условиях НАДН окисляется в ходе кислородзависимого процесса окислительного фосфорилирования (гл. 15), результатом которого является образование большого количества АТФ. [c.243]

    У микроорганизмов также описан другой способ окисления гексоз — гексозомонофосфатный путь. Этот путь характерен для ряда аэробных микроорганизмов, в частности грибов сем. Аз-pergilla eae, и существует наряду с анаэробным гликолизом. [c.96]


Смотреть страницы где упоминается термин Гликолиз аэробный: [c.108]    [c.156]    [c.127]    [c.64]    [c.317]    [c.152]    [c.656]    [c.350]    [c.351]    [c.569]    [c.198]    [c.135]    [c.29]    [c.246]    [c.254]   
Биологическая химия Изд.3 (1998) -- [ c.328 ]

Стратегия биохимической адаптации (1977) -- [ c.355 , c.356 ]

Биохимия человека Т.2 (1993) -- [ c.181 ]

Биохимия человека Том 2 (1993) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Аэробный гликолиз молочной

Аэробный гликолиз углеводов

Гликолиз

Гликолиз в условиях аэробных

Катаболизм глюкозы. Аэробный и анаэробный гликолиз

Сахар крови.— Гликоген.— Гликолиз.— Окисление углево— Анаэробный путь гликолиза (схема Эмбдена — Мейергофа).— Аэробный цикл, или1 цикл Кребса.— Другие пути окисления углеводов.— Фотосинтез.— Превращение углеводов в жиры Обмен жиров

аэробные



© 2025 chem21.info Реклама на сайте