Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система ферментов гликолиза

    В настоящее время известно, что система ферментов гликолиза и спиртового брожения находится в гиалоплазме клеток и поэтому может быть выделена из дрожжей и мышечной кашицы сравнительно просто в форме водного раствора. [c.264]

    На проведении реакций, катализируемых системами ферментов основаны многие крупномасштабные процессы в пищевой промышленности. Классическим примером является получение этанола и содержащих его продуктов винно-водочной промышленности, в ходе которого дрожжи с помощью набора ферментов гликолиза (см. 8.2) превращают сахар в пируват и далее при действии пируват декарбоксилазы и алкогольдегидрогеназы — в этиловый спирт. В основе применения различных видов молочнокислых бактерий в молочной промышленности лежит их способность осуществлять гликолиз и восстановление пирувата с по- мощью лактатдегидрогеназы. [c.159]


    Наиболее изучены следующие системы ферментов системы гликолиза, окисления жирных кислот, цикла трикарбоновых кислот, ферменты дыхательной системы (переноса электронов), преобразования и синтеза аминокислот, синтеза белков, синтеза липидов, образования мочевины, синтеза пуринов и пиримидинов п синтез ДНК и РНК. [c.159]

    Доступность материала для исследования ферментов гликолиза. В настоящее время наследственные повреждения известны почти для всех ферментов гликолиза. Этим гликолиз выделяется среди прочих путей метаболизма, для которых далеко не всегда известно, существуют ли наследуемые дефекты, затрагивающие хотя бы некоторые из ферментов. Проще всего можно объяснить этот факт тем, что необходимую для исследований кровь больных сравнительно легко получить анализ венозной крови больных, находящихся в стационаре, вполне доступен в отличие, например, от соскоба кожи, не говоря уже о биопсии мозга. Кроме того, эритроциты-это высокоспециализированные клетки, поэтому в них функционируют далеко не все ферментативные системы, имеющиеся в других клетках. Таким образом, количество реакций, которые могут быть нарушены, относительно невелико. Это значительно облегчает анализ. [c.17]

    Манометрический метод, разработанный О. Варбургом в 20-х годах для определения дыхания переживающих тканей, может быть использован и для исследования других обменных процессов, например гликолиза, дезаминирования, изучения ферментов и субстратов промежуточного обмена веществ. Метод позволяет определять изменение давления в замкнутой системе за счет выделения или поглощения в процессе реакции газообразного продукта. Этим замкнутым пространством служат сосудики разнообразной формы, присоединенные посредством шлифа к манометру, заполненному специальной, не смачивающей стенки манометра жидкостью. Зная объем замкнутого пространства V и измерив наступившее в результате реакции изменение давления к, можно рассчитать объем образовавшегося или поглощенного газообразного продукта. Измерения производят в аппарате Варбурга. [c.10]

    Таким образом, критическим фактором в регуляции этого фермента, так же как и многих других ферментов, участвующих в процессах гликолиза и глюконеогенеза, является стадия фосфорилирования адениловой системы. Имеются основания считать, что эту первую и наиболее важную стадию гликолиза включает АМР. Состояние адениловой системы оказывает влияние также на последующие стадии при гликолизе и в цикле трикарбоновых кислот. Таким образом, уменьшение концентрации АТР вызывает ингибирование процесса окисления пирувата и изоцитрата. Кроме того, в начальной стадии фосфоролиза гликогена и при окислении триозофосфатов необходимо наличие неорганического фосфата. Следовательно, быстрое потребление АТР клеткой (например, при мышечном сокращении) приводит к уменьшению концентрации АТР и увеличению концентрации АМР и Pi. Все эти изменения активируют процесс гликолиза. Однако, если мышечная активность прекращается и содержание АТР возрастает, наблюдается ингибирование сразу нескольких стадий гликолиза (рис. 11-11). [c.511]


    Сложные ферментативные системы. Некоторые реакции не могут быть осуществлены только одним ферментом, а нуждаются в системе нескольких ферментов, согласованных друг с другом и работающих совместно. Такими сложными ферментативными процессами являются, папример, спиртовое брожение и гликолиз в мышцах, ассимиляция углекислоты в зеленых листьях, синтез амилозы и амилопектина, переваривание белков и т.д. Сложным ферментативным процессом, характеризующимся сотрудничеством нескольких ферментов и коферментов, является окисление, в результате которого производится энергия, связанное с дыханием животного организма. Известны многие, но далеко ие все стадии этого сложного процесса. [c.801]

    Окислительное декарбоксилирование а-кетокислот в карбоновые кислоты с уменьшенной на один атом цепью углеродных атомов осуществляется при участии системы ферментов. Через ряд каталитических превращений пировиноградная кислота, являющаяся одним из продуктов углеводного обмена (в частности гликолиза), в виде продукта ее декарбоксилирования и дегидрирования — высоко макроэргического ацетил-КоА (схема 95) — вводится в цикл трикарбоновых кислот в звене превращений щавелевоуксусной кислоты в лимонную кислоту и в конечном счете окисляется в двуокись углерода и воду. Первичное расщепление пировиноградной кислоты с отделением двуокиси углерода осуществляет ТДФ. В последующих превращениях образовавшегося ацильного остатка окислительным агентом служит (+) а-липоевая кислота (ЛК, тиоктовая кислота) [376], которая сама при этом подвергается восстановительно.му ацилированию при каталитическом действии пируватдегидрогеназы в б-ацетилдигидролипоевуто кислоту. [c.421]

    Механизм переноса Ог в полость пузыря связан со второй системой капилляров, находящейся уже в самом эпителии этого органа (рис. 110). Кровь попадает здесь в условия высокой кислотности, которую поддерживает весьма активная система аэробного гликолиза в эпителиальных клетках. Гликолитические ферменты этой ткани эффективно функционируют при высоких напряжениях Ог. Эффект Пастера (торможение гликолиза при высоком напряжении Ог) здесь отсутствует — либо благодаря особой форме фосфофруктокпназы, нечувствительной к ингибированию продуктами аэробного обмена, либо потому, что интенсивность аэробного обмена очень низка. Как бы то ни было, наблюдаемое закисление крови, поступающей в капилляры эпителия, вполне может быть отнесено за счет образования молочной кислоты. Кроме того, в эпителии имеется высокоактивная карбоангидраза, которая, по-видимому, способствует образованию нонов Н+. [c.355]

    Дальнейшее окисление продуктов гликолиза и пентозного цикла осуществляется по циклу Кребса системами ферментов и переносчиков электронов, находящимися в митохондриях — особых внутриклеточных включениях. Митохондрии находятся во всех тканях, где лроисходит обмен энергии. Наибольшее количество митохондрий имеется у насеко.мых в. мыпщах, а у теплокровных в тканях печенп. [c.31]

    Какого бы типа векторные плазмиды ни использовались, для эффективного инициациирования тракскрипции необходимо, чтобы в их составе присутствовал дрожжевой промотор. Чаще всего используют гликолитические промоторы. Поскольку ферменты гликолиза, несмотря на то что они кодируются уникальными генами, составляют от 1 до 5% суммарного клеточного белка, можно было предположить (и зто оказалось верно), что промоторы соответствующих генов относятся к разряду сильных промоторов. Другое необходимое условие успешной экспрессии — это эффективное терминирование транскрипции. Дрожжевые клетки обычно узнают терминаторные последовательности млекопитающих, однако с точки зрения оптимизации системы имеет смысл ввести в вектор дрожжевой терминатор (рис. 7.1). Промотор и терминатор разделены уникальным сайтом рестрикции, что позволяет реализовать стандартный путь создания рекомбинантной конструкции с интересующим структурным геном. [c.215]

    Повреждения ферментов гликолиза. В период между 1961-1975 гг. были описаны генетически обусловленные нарушения И из 13 ферментов гликолиза. По меньшей мере для 8 из описанных дефектов удалось показать связь с несфероцитарной гемолитической анемией. В ряде случаев наблюдали сопутствующие нарушения центральной нервной системы и мышц. В общем случае уменьшение активности фермента ниже критического значения приводит к накоплению метаболита, предшествующего данному блоку, и к падению концентрации метаболита, образующегося в данной реакции. Недостаточность некоторых из этих ферментов сопровождается побочными эффектами, например снижением уровня АТР. Однако системе присуща способность к регуляции, которая увеличивает ее стабильность, поэтому [c.17]

    Формирование гликолитического метаболона на мышечных филаментах физиологически оправдано, поскольку такое рас положение метаболона обеспечивает поступление АТР, продуцируемого гликолитической системой, на АТРазные активные центры, расположенные на головках молекулы миозина. В качестве подложки для формирования комплекса ферментов гликолиза в мышцах рассматриваются молекулы актина [28, 61] и миозина [11]. [c.182]


    В разделе 1.2 мы отметили два общих принципа регуляции биологических систем во-первых, пространственную обособленность рабочих центров и центров управления и, во-вторых, то обстоятельство, что роль факторов контроля играют факторы, являющиеся внешними по отношению к регулируемой системе. Эти принципы должны быть справедливы и для метаболона. Метаболой как управляемая система должен иметь пространственно разделенные рабочие центры и центры управления. В роли рабочего центра метаболона выступает, очевидно, микрокомпартмент, в котором осуществляется химическая трансформация поступающих в него субстратов. Роль центра управления мы отводим якорному белку подложки, участвующему в сборке комплекса [10]. Например, в комплексе ферментов гликолиза, адсорбированном на мембране эритроцитов, роль центра управления принадлежит белку полосы 3. [c.189]

    Как правило, Н+-АТФазы оказываются необходимыми, когда ни свет, ни энергия дыхания не доступны для мембраны, совершающей некоторую работу, связанную с расходом A iH. Примером такой системы могут быть анаэробные бактерии, получающие энергию гликолитическим путем. У таких бактерий АТФ, образованный ферментами гликолиза, может утилизироваться +-АТФа-зой, находящейся в цитоплазматической мембране. Д ыН, генерируемая Н+-АТФазой, используется для совершения осмотической работы аккумуляции метаболитов при участии Н+, метаболит-сим-портеров. [c.121]

    Изменение углеводного обмена при гиноксических состояниях. Отставание скорости окисления пирувата от интенсивности гликолиза наблюдается чаще всего при гиноксических состояниях, обусловленных различными нарушениями кровообращения или дыхания, высотной болезнью, анемией, понижением активности системы тканевых окислительных ферментов при некоторых инфекциях и интоксикациях, гипо- и авитаминозах, а также в результате относительной гипоксии при чрезмерной мышечной работе. [c.362]

    Развитие опухолевых процессов неизбежно приводит к разнообразным биохимическим сдвигам в опухолевых клетках и в больном организме в целом. Эти изменения также могут быть описаны соответствующими кинетическими закономерностями. Химическое соединение, обладающее противоопухолевыми свойствами, естественно, будет оказывать тпияние па соответствующие биохимические процессы. Примером тахсих влияний может служить воздействие противоопухолевых препаратов на процессы биологического окисления в опухолевых и нормальных клетках, которые можно характеризовать количественно по активности ферментов сукциноксидазной системы [9]. Строго количественно может быть охарактеризовано, например, действие малотоксриных фенольных соединений на процессы гликолиза, особенно в экспериментах с изолированными ферментными системами [10—12]. [c.542]

    Спасский выявил ряд особенностей действия индивидуальных соединений РЗЭ и комбинаций соединений отдельных элементов Подгрупп иттрия и церия на разные органы и системы, Так, фиброгенное действие изучалось в экспериментах с интра-трахеальным введением животным Y2O3 и суммы РЗЭ подгруппы иттрия. Через 3—6—9 мес. после затравки появляющиеся в ткани легких мелкие узелки гранулематозного характера сливаются в более крупные очаги, но без явлений склерозирования. Содержание окснпролина, коллагена и эластина в легких у затравленных животных не отличалось от соответствующих показателей у крыс контрольных групп, отсутствовали признаки пневмосклероза. Все это подтверждает представление о малой фиброгенной активности РЗЭ. Неблагоприятное действие РЗЭ на печень проявляется в снижении экскреторной и антитоксической ее функции, в патоморфологических изменениях, в нарушениях белкового, жирового, углеводного абмена. При хроническом введении крысам нитрата скандия интенсивность тканевого дыхания резко падает, происходит снижение активности основного фермента пентозного цикла — транскетолазы. Скорость гликолиза в то же время не повышается. Если по параметрам острой токсичности РЗЭ относятся к веществам П1— [c.258]

    Во второй реакции, поставляющей глюкозные остатки для процесса гликолиза, субстратом служит гликоген. Эта реакция катализируется гликогвн-фосфо-рилазой, которая также представляет собой регуляторный фермент. Как в печени, так и в мышцах гликоген-фосфорилаза занимает стратегически важную позицию между резервуаром топлива-гликогеном и гликолитической системой, на- [c.462]

    Выше мы видели, что АТР и ADP являются модуляторами важных регуляторных ферментов, участвующих в гликолизе, цикле лимонной кислоты и окислительном фосфорилировании АТР действует как отрицательный модулятор, а ADP обычно стимулирует катаболизм углеводов. Вследствие этого любое изменение отношения действующих масс [ATP]/[ADP] [PJ, в норме весьма высокого, может соответствующим образом изменять также и активность некоторых регуляторных ферментов центральных катаболических путей. Имеются, однако, среди этих ферментов и такие, для которых положительным модулятором служит АМР. Чтобы оценить участие в метаболической регуляции наряду с АТР и ADP также и АМР, Даниэль Аткинсон ввел понятие энергетического заряда и использовал его в качестве одной из характеристик энергетического состояния клеток. Энергетический заряд есть мера заполнения всей аденинну-клеотидной системы (т.е. суммы АТР, ADP и АМР) высокоэнергетическими фосфатными группами  [c.541]

    К материалам, привлекшим к себе внимание лишь в недавнее время, не в последнюю очередь относится асбест, поскольку его волокна при достаточно интенсивном и длительном воздействии определенно вызывают развитие рака. В связи с этим разрабатываются различные меры для уменьшения загрязнения среды этим материалом. Недавно, однако, выяснилось, что канцерогенное действие волокон асбеста связано не с материалом как таковым, а с длиной его волокон. По-видимому, только волокна длиной от 5 до 250 мкм и диаметром менее 3 мкм (а в особенности менее 1 мкм) способны проникать в легкие и оказывать там вредное воздействие (Тгипко, 1979). Более крупные волокна не проникают в легкие, а более короткие выводятся лимфатической системой. В отличие от этого волокна критических размеров не полностью проникают в ткань легких, и клеточные мембраны подвергаются здесь хроническому повреждению, что приводит к постоянной нехватке ферментов. Эта нехватка компенсируется усилением процессов гликолиза. Постоянный конфликт клетки с волокном становится причиной хронического раздражения и приводит к возникновению опухолей. Особенно часто развиваются опухоли плевры и брюшины. [c.161]

    Очевидно, что в дополнение к регуляторным механизмам, которые можно предсказать на основании законов химической кинетики интегрированной системы, живая природа разработала специфические механизмы ферментативного контроля. Прежде чем перейти к обсуждению таких механизмов, отметим, что скорость определенной последовательности реакций будет зависеть от доступности субстратов и кофакторов соответствующих ферментов. Как мы видели, изучение процесса гликолиза началось с наблюдения, что распад глюкозы под действием дрожжевого сока быстро замедлялся и прекращался совсем, но потом возобновлялся, если в реакционную смесь добавляли ортофосфат. В другом случае гликолиз не протекал дальше образования фруктозо-1,6-дифосфата без добавления АДФ именно таким способом Гарден и Йонг впервые обнаружили АДФ. [c.53]

    Для того чтобы два тесно сопряженных между собой процесса—перенос электронов и гликолиз, каждый из которых нуждается в АДФ,— могли функционировать непрерывно, количество АДФ в системе должно быть достаточно большим. Если отношение АДФ/АТФ в клетке понизится, то замедление реакции должно, по-видимому, начаться сначала в той системе, которая обладает меньшим сродством к АДФ. Поскольку ферменты системы гликолиза имеют более высокую константу Михаэлиса для АДФ, чем ферменты дыхательной цепи, то можно предсказать, что в аэробных условиях, когда АДФ легко превращается в АТФ в ходе реакции окислительного фосфорилирования, процесс гликолиза начнет замедляться и затем совсем прекратится. Подавление брожения воздухом фактически впервые обнаружил Пастер. Однако высказывались и другие предположения относительно механизма этого явления, получившего название эффекта Пастера. Так, например, ортофосфат требуется для окислительного фосфорилирования и в то же время служит субстратом для гликолити чес кого фермента глицеральдегид-З-фосфатдегидрогена-зы. Следовательно, убыль фосфата в результате окислительного фосфорилирования может привести к торможению гликолиза. Другая интерпретация эффекта Пастера вытекает из попытки ответить на вопрос почем,у злокачественные ткани образуют в аэробных условиях в значительных количествах лактат, в то время как нормальные ткани этим свойством не обладают В этом случае происходит нарушение того механизма регуляции, с которым мы уже познакомились. Этот эффект можно объяснить по аналогии [c.55]

    Для биологической системы чрезмерное производство АТФ ненамного лучше, чем выработка недостаточного количества этого вешества. Имеющиеся данные показывают, что синтез АТФ регулируется таким образом, чтобы его производство не превышало значительно его потребления. Это весьма сложное явление, но одним важным его аспектом является действие АТФ на фосфофруктокиназу — фермент, катализирующий получение фруктозо-1,6-дифосфата из фруктозо-6-фосфата (см. рис. 40.13). АТФ в концентрации, превышающей обычные физиологические значения, сильно ингибирует каталитическую активность фос-фофруктокиназы, в то время как АМФ, образующийся при расходовании АТФ во многих нуждающихся в энергии реакциях, значительно активирует этот фермент. Таким образом, когда концентрация АТФ мала (а АМФ велика), гликолиз и последующая регенерация АТФ повторяется. При повышении концентрации АТФ гликолиз замедляется и глюкоза расходуется по другим путям, в основном на синтез гликогена. [c.405]

    Таким образом, наличие в проводящих путях активных ферментов — гексокиназы, фосфогексоизомеразы, альдолазы — свидетельствует о том, что начальный этап дыхательного процесса осуществляется в проводящей системе по гликолитическому пути. Существование активного гликолиза в проводящих тканях подтверждается присутствием в них пировиноградной кислоты, а также небольшого количества молочной кислоты. Весьма характерным в этом отношении оказался также и состав фосфорных эфиров сахаров проводящих тканей, в которых преобладающим фосфорилированным сахаром оказался глюкозо-6-фосфат присутствует также фруктозо-6-фосфат, но в меньшем количестве. В некоторых случаях была обнаружена фосфоглицериновая кислота. Фосфорные эфиры, типичные для окислительного распада гексоз — рибо-зо-5-фосфат, седогептулозо-7-фос-фат,— в проводящих тканях не были обнаружены. [c.250]

    Лактат, поступающий в печень, превращается в пируват путем обращения лактатдегидрогеназной реакции. Хотя обычно эта реакция сильно сдвинута в сторону образования лактата, в печени она протекает в обратном направлении, что обусловлено высокой концентрацией лактата и удалением пирувата на синтез глюкозы. Большая часть реакций на пути от пирувата до глюкозы катализируется ферментами гликолитической системы — путем обращения соответствующих реакций гликолиза. Однако нормальный путь гликолиза, идущий сверху вниз , включает 4 необрати.мых этапа, которые не могут быть использованы на пути снизу вверх , при обратном превращении пиру-вата в глюкозу. Это реакции, катализируемые 1) пируваткиназой, 2) фосфоглицераткиназой, 3) фосфофруктокиназой и 4) гексокиназой. При синтезе глюкозы эти этапы осуществляются обходными путями, с помощью иных реакций, термодинамически благоприятных для протекания процесса в сторону глюкогенеза. [c.53]

    В отличие от многнх других регуляторных ферментов РуДФ-карбоксилаза находится в клетке в высокой концентрации на ее долю может приходиться до 50% всего белка зеленых растительных клеток. В противоположность этому фосфофруктокиназа — главный регуляторный фермент в цепи гликолиза — во многих гликолитических системах содержится в очень малых количествах. [c.105]


Смотреть страницы где упоминается термин Система ферментов гликолиза: [c.453]    [c.326]    [c.158]    [c.92]    [c.399]    [c.87]    [c.91]    [c.45]    [c.243]    [c.139]    [c.399]    [c.152]    [c.76]    [c.405]    [c.254]    [c.492]    [c.467]    [c.15]    [c.403]    [c.236]    [c.333]    [c.117]    [c.215]    [c.104]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гликолиз



© 2025 chem21.info Реклама на сайте