Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен из ацетальдегида

    Хотя природный каучук представляет собой полимер изопрена (2-метил-бутадиен), однако бутадиен получается значительно проще и исключительно легко полимеризуется поэтому в настоящее время в качестве основы для производства синтетического каучука применяют почти исключительно бутадиен. Получение бутадиена из ацетилена через ацетальдегид-ацеталь-доль и 1,3-бутиленгликоль по так называемому четырехступенчатому способу большого интереса не представляет. В данной книге не рассматривается детально способ С. В. Лебедева получения бутадиена из этилового спирта, хотя этиловый спирт является исключительно важным и массовым продуктом нефтехимической промышленности (гидратирование этилена, см. стр. 200). [c.84]


    Вторым важным источником сырья является ацетилен, получаемый из карбида кальция. Ацетилен уксусной или соляной кислотой превращается соответственно в винилацетат или винилхлорид — мономеры виниловых смол. Ацетилен превращается в винилацетилен, а затем в хлоропрен (стр. 444). Ацетилен также каталитически гидратируется, превращаясь в ацетальдегид, который в свою очередь после дегидратации дает бутадиен. Ацетальдегид окисляется в уксусную кислоту, а последняя превращается в ацетон, который путем реакции с циангидрином дает метакрилаты. [c.479]

    Разработан метод определения эфира наряду с бутадиеном, ацетальдегидом и этанолом в конденсатах синтеза бутадиена по методу С. В. Лебедева. Метод проверен на модельных смесях. Результаты хроматографического определения ацетальдегида сопоставлены с результатами, полученными химическим путем. НФ диоктилфталат. [c.203]

    На описываемом заводе метан подвергают окислительному пиролизу при температуре 1700° кислородом, получаемым путем разделения воздуха на установках Линде. Продукты окислительного пиролиза после компримирования и охлаждения поступают на выделение ацетилена, который направляется далее на переработку в ацетальдегид. Ацетальдегид получают из ацетилена в реакторах, содержащих катализатор — водный раствор сульфата ртути, сульфата железа и металлическую ртуть. Образовавшийся ацетальдегид подвергают неполному гидрированию, продуктом которого является этиловый спирт. Конденсацией спирта с ацетальдегидом получают бутадиен. Гидрогенизация и конденсация проводится в трубках, обогреваемых циркулирующим горячим жидким теплоносителем, нагреваемым в отдельной топке. Бутадиен выделяют из полученной смеси дистилляцией и ректификацией. [c.162]

    Суммарный выброс токсических примесей (бензол, бутадиен 1,3, ацетальдегид, формальдегид и полициклические органические вещества) должен быть, как минимум, на 15% ниже уровня для бензинов 1990 года. [c.348]

    Связь Бензохинон Ацетальдегид Этан Этилен Бутадиен [c.87]

    При извлечении бутадиена в производстве синтетического каучука по методу Лебедева требуются селективные поглотители. Применяемые поглотители абсорбируют наряду с бутадиеном также содержащиеся в газе псевдобутилен, ацетальдегид, спирт, пропилен, эфир и др. Из различных испытывавшихся поглотителей лучшие результаты дают (в порядке убывания поглотительной способности) тетралин, керосин, скипидар и этиловый спирт. Наилучшими из них следует считать тетралин и керосин, обладающие малым давлением пара. Однако при применении этих поглотителей десорбцию необходимо вести в вакууме, что усложняет установку. [c.677]


    Процесс сопровождается большим числом побочных реакций. Так, например, при синтезе тиофена из ацетилена [47—49, 51—53] неочищенный продукт реакции содержит наряду с тиофеном также бутадиен-1,3, ацетальдегид, сероуглерод, ацетон, бензол, [c.360]

    При выпуске основной продукции на предприятиях СК в остаточных количествах в атмосферу поступают следующие вредные вещества углеводороды предельные и непредельные нормального строения, ацетон, ацетонитрил, аммиак, ацетальдегид, формальдегид, метанол, фенол, стирол, а-метилстирол, изопрен, бутадиен, пыль органическая и минеральная. [c.334]

    По методу, разработанному Остромысленским[24],предлагается получать бутадиен нагреванием смеси ацетальдегида и этилового спирта в присутствии глинозема в трубке при телшературе 360— 460° и давлении 680—710 мм. Продукт удаляют из реактора сразу же после образования и конденсируют для отделения его от водорода, окиси углерода и этилена. В качестве катализаторов этой реакции применяют также окиси цинка, тантала и ниобия [25]. [c.35]

    В качестве средства для очистки бутадиена фракционированием часто прибавляют соединения, образующие азеотропные смеси с одним или более компонентами смеси олефинов. Алкилнитриты [36] образуют с бутиленами азеотропы, кипящие ниже, чем бутадиен, что делает возможным выделение бутадиена фракционированной перегонкой. Азеотроп метилнитрита с бутаном перегоняется при — 20°, с бутиленом и изобутиленом при —16°, а с бутадиеном при — 4,7°, причем в остатке оказывается псевдобутилен. Ацетальдегид [37] и аммиак [38] действуют таким же образом, удаляя бутилены при температурах более низких, чем температура кипения бутадиена. [c.37]

    В качестве примесей, отрицательно влияющих на процесс, можно отметить ацетилен, бутадиен-1,3, СО, СО,, ацетальдегид, эфиры и др. Они по-разному сказываются на уменьщении выхода целевых продуктов. Так, ацетилен и бутадиен-1,3 полимеризуются на кислых катализаторах с образованием смолистых веществ, которые забивают катализаторы и тем самым дезактивируют их. Также дезактивирует катализатор оксид углерода, который трудно отделить от олефинов. [c.280]

    Этанол, ацетальдегид Бутадиен, НгО MgO—5Юг 375—525° С [93] [c.86]

    Бутадиен-1,3 4- ацетальдегид 4- этилен Бутадиен-1, 3 [c.114]

    И. И. Остромысленский открыл каталитическую конденсацию ацетальдегида с этиловым спиртом в бутадиен. [c.668]

    В США во время второй мировой войны был разработан фирмой Карбид энд Карбон Кемикел компани двухступенчатый метод получения бутадиена из этилового спирта. Спирт над медью при 400° дегидрируется в ацетальдегид, который затем на второй ступени с трехмолярным избытком спирта при 350 над катализатором из 2% пятиокиси тантала и 98% силикагеля преобразуется в бутадиен [3]. [c.84]

    Большое число важнейших продуктов нефтехимической промышленности можно получать из этплепа и из ацетилена. Выбор того или иного исходного сырья зависит от его доступности и часто от исторических условий. Так, хлористый винил, акрилонитрнл, ацетальдегид, монохлоруксусную кислоту и, наконец, бутадиен можно получать как из этилена, так и из ацетилена (рис. 146). [c.242]

    Так как 2-хлор-1,3-бутадиен образуется только при отщеплении НС1 от 3,4-дихлор-1-бутена, а из 1,4-дихлор-2-бутена получается 1-хлор-1,3-бутадиен, то проводится каталитическая изомеризация соединения (2) в (1) путем нагревания в присутствии солей меди 1) с последующим фракционированием продуктов изомерного превращения и выделением в качестве основного продукта 3,4-дихлор-1-бутена. Путем отщепления от него НС1 растворами NaOH получают хлоропрен, содержащий незначительные примеси 1-хлор-1,3-бутадиена (<1%) и ацетальдегида (<0,2 /о). [c.721]

    Эту реакцию нетрудно распространить на высшие олефины как правило, образуются кетоны, причем группа ОН в решающей стадии присоединяется к положительному концу двойной связи [113, 122]. Однако изменение реакционной среды может вызвать заметное повышение выхода альдегида из gHs в качестве главного продукта образуется ацетон, а пропионовый альдегид в количестве 20% получается при увеличении концентрации НС1 или при соответствующем выборе лигандов для Pd. Бутадиен сначала дает кротоновый альдегид, что указывает на 1,4-механизм, а затем ацетальдегид, который в присутствии сильной кислоты быстро конденсируется в триацетилбензол. В случае изобутена (и сходных олефинов) получаются только следы изомасляного альдегида, главным же продуктом является трет-бу-танол — результат простой гидратации, катализируемой кислотой. Вышеописанная схема показывает, что окончательная перегруппировка комплекса в этом случае невозможна  [c.170]

    Промышленное значение приобрел синтез бутадиена из ацетилена через ацетальдегид, альдоль и бутилеигликоль при дегидратации последнего соединения образуется бутадиен  [c.73]

    Ацетальдегид — -Этиловый спирт — -Уксусиая кислота, уксусный ангидрид — Этллацетат (реакция Кляйлеиа — Тищенко, м. ра.)д. Г. 7,3,2) -Кретоновый альдегид (см. габл. ( ) —>Альдоль( Бутадиен (см. табл. 53) — -Акролеин —>-Пеитаэритрит —- Хлораль— ДДТ (см. разд. Г, 5.1.7.5) [c.338]

    Для фрагмента =С—С= (в диенах, дикарбонильных соед., производных щавелевой к-ты, бензальдегиде и т.п.) устойчивы плоские конформации, что обусловлеио значит. Сопряжением в плоских струггурах. Это приводит к двукратному барьеру вращения с максимумом прн 90 (20,5 кДж/моль в бутадиене). При вращении относительно sp -sp -связи (напр., в пропилене, ацетальдегиде) обычио более стабильны заслоненные конформации типа IV, а конформации типа VI соответствуют наивысшей энергии. Конформации V представляют промежут. минимум. Если три заместителя у ip -атома одинаковы (нитрометаи, толуол), то имеется симметричный шестикратный барьер, описываемый ф-лой И(ф) = (Кб/2)(1 — os6устойчива также заслоненная конформация. Барьер вращения вокруг ip-i/p -связи практически равен нулю. [c.458]


    На заводах синтетического каучука в сточные воды попадают полимеры, смолы, масла, ацетилен, винилацетат, ацетальдегид, акрилонит-рил, бутадиен и др. Методами биологической очистки достаточно полно могут быть окислены этиловый спирт и карбоновые кислоты, хуже — ароматические углеводороды. Весьма устойчивы к окислению диметил-и триметилформамид. В этом случае применяется комплексная очистка, включая и утилизацию, физико-химическим ( сорбция, дистилляция, ионный обмен) и биологическим методами. [c.16]

    Высокие выходы чистого бутадиена получаются при удалении и разделении газов, образовавшихся в результате разложения, сразу же после их образования. Не изменившийся этиловый спирт и побочные продукты (этилен и ацетальдегид) удаляют конденсацией газов при 0° бутадиен и небольшие количества бутилена и этилена разделяют, как описано на стр. 37. Промышленное получение бутадиена этим методом детально описано Талалаем [19, 20]. [c.34]

    Бутадиен, применяемый для сополимеризации с целью получения синтетических каучуков, должен иметь степень чистоты, равную 98,5%. Исследование влияния различных загрязнений, обычно содержащихся в бутадиене [34], показало, что присутствие 0,1—1,0% ацетальдегида, пропилена, аллена, изопрена и этилаце-тилена не влияет на полимеризацию бутадиена, в то время как более высокие концентрации этих соединений вызывают заметное понижение степени превращения мономера в полимер. Бутилены и пен-тены с прямой цепью вызывают замедление полимеризации даже при концентрации 1%. Превращение бутадиена в полимер резко понижается пентадиеном-1,4 и несколько менее заметно 1-винил-Д -циклогексеном. Присутствие более 1% винилацетилена не влияет на скорость полимеризации, но вызывает образование поперечных связех в полимере, причем получается продукт, содержащий гель, не растворимый в бензоле .  [c.36]

    В 1915 г. была впервые продемонстрирована возможность использования рассматриваемой реакции для получения диолефинов. При пропускании смеси паров ацетальдегида и этилена над нагретым глиноземом был получен 1,3-бутадиен [373]. Однако лишь в 1917—1920 году Принсом [374] былп проведены более или менее систематические исследования рассматриваемого превращения. Этим автором была изучена конденсация формальдегида со стиролом, пиненом, камфеном и лимоненом в присутствии серной кислоты. В качестве растворителя применялась вода, а также ледяная уксусная и муравьиная кислоты. Было найдено, что основными продуктами реакции в водном растворе являются циклические формали 1,3-гликолей, а также непредельные спирты [c.218]

    Бутадиен синтезируется из ацетилена ну тем (1) гидролиза, нрп-Бодящего к образованию ацетальдегида в присутствии разбавленной серной кислоты п соли ртути в качестве катализатора, (2) конденсации ацетальдегида в альдол, с разбавленным раствором НаОН, играющим роль катализатора, (3) каталитической гидрогенизации альдоля под давлением в 1,3 бутилен-гликоль и, наконец, (4) дегидратации последнего до углеводорода. В СССР бу та-диен приготовляется из этилового спирта, пропускаемого над специальным катализатором, что приводит к дегидрогенизации одной молекулы в ацетальдегид, который дегидратиру ется второй молекулой спирта  [c.443]

    Основой современного органического синтеза являют-я поэтому простейшие углеводороды, такие, как метан, тан, пропан, бутаны, пентаны, этилен, пропилен, бутиле-1Ы, бутадиен, изопрен, ацетилен, бензол, толуол, ксилолы, сумол, циклоалканы, нафталин, простейшие спирты, фено-1Ы, альдегиды, кетоны, карбоновые кислоты, амины — ме-анол, этанол, ацетальдегид, ацетон, фенол, крезолы, ук-усная кислота, анилин и др [c.749]

    Алифатический альдегид (пропионовый, н- или изо-магляный, н- или изовалериановый и др., за исключением формальдегида и ацетальдегида) Полимер Аддукт щелочного металла, 1) с органическим соединением (II), содержащим сопряженные двойные связи (нафталином, антраценом, нафта-ценом бутадиеном, стиролом, изопреном и др.), получаемый взаимодействием I и II при пониженном давлении в органическом растворителе [278] [c.28]

    Следовательно, такие эффекты поляризации сами по себе не являются доказательством существования сверхсопряжения. К сожалению, мы не можем оценить изменения [л в зависимости от гибридизации и поэтому нельзя установить, можно ли передать полностью наблюдаемый дипольный момент пропилена с помощью уравнения (5-5). Даже тот факт, что 1-метилбутадиен имеет больший момент, чем пропилен, нельзя рассматривать как доказательство значительности резонанса, ибо это отличие может быть обусловлено поляризацией я-электронов под влиянием соседней полярной связи СНз—С. (Поляризуемость— величина, связанная теоретически, как и поглощение света, с возбужденными состояниями молекулы бутадиен обладает гораздо большей поляризуемостью, чем этилен, так как его энергия возбуждения меньше.) Более того, можно предполагать, что разность моментов ацетальдегида и формальдегида была бы гораздо больше, если бы полярность пропилена вызывалась только резонансным взаимодействием [см. выражение (5-1)], поскольку соответствующая дипо-лярная резонансная структура в случае ацетальдегида должна иметь гораздо большее значение из-за большей электроотрицательности кислорода по сравнению с углеродом. Разность (0,45 О) между моментами ацетальдегида и формальдегида не намного превышает момент (0,340) пропилена. Даже если учесть то, что резонансный момент [ср. равенство (5-3)] и момент связи С = 0 следует складывать как векторы, то все же резонансный момент в ацетальдегиде составит только половину момента пропилена, так что различие остается незначительным. [c.87]

    Процесс радиационной нолимеризации в твердом состоянии исследован для таких мономеров, как акрилонитрил, метакрилонитрил, метилметакрилат, акриламид, метакриламид, К-арилметакриламид, формальдегид, ацетальдегид, метакриловая кислота, бутадиен-1-карбоновая кислота, Р-про-пиолактон, триоксан, 3,3-бис, бис-(хлорметил) оксациклобутан, хлорме-тилциклооксабутан и других (313, 316, 319, 320, 329, 331, 332]. [c.75]

    Бутен-1 Октен-1 Децен-1 1, 3-Бутадиен Винилхлорид Метилэтилкетон Метилгексилкетон Метилоктилкетон Кротоновый альдегид Ацетальдегид Платиновый катализатор Выход 80% (20° С 10 мин) Выход 42% (50° С, 30 мин) Выход 34% (70° С, 60 мин) Выход 34% (30° С, 30 мин) Выход около 100% (20° С, меньще 1 мин) [648] = [c.1141]

    Во время I мировой войны предпринимались попытки синтезировать каучук. Кириакидес (1914 г.) показал, что изопрен — основная составная часть натурального каучука — может быть получен пропусканием 1,2-эпокси-2-метилбутана пад каолином при 440— 460° С и пониженном давлении [164]. Вместе с тем 2-метилбутан-диол-1,3 можно дегидратировать на фосфате алюминия при 450° С и давлении 15—20 мм рт. ст. [165]. Несколько позднее Остромыс-ленский и Келбасинский [198] получили бутадиен-1,3 конденсацией этилового спирта и ацетальдегида на неочищенной окиси алюминия (в случае очищенной окиси алюминия образуется некоторое количество СН2=С=СНСНз). Оказалось, что бутадиен представляет собой наиболее подходящий мономер для приготовления каучука, и с этого времени его стали интенсивно изучать. [c.123]

    Ацетилен служит исходным продуктом для синтеза большого числа важнейших продукгов нефтехимической промышленности, которые получают также и из этилена. Так, хлористый винил, а1крило итрил, ацетальдегид, монохлоруксусную кислоту, бутадиен можно получить из этилена и из ацетилена. Выбор сырья определяется его доступностью и экономичностью того или иного процесса. Однако, есть и специфические синтезы, характерные для ацетилена. Среди растворителей и экстракционных агентов исключительно важное значение имеет трихлорэтилен. Его производят дву.хстадийным синтезом из ацетилена. Вначале при хлорировании ацетилена образуется тетрахлорэтан, а при его последующем дегидрохлорировании получается трихлорэтилен  [c.261]

    Технологический процесс на заводе сводится к окислению метана кислородом. Получается ацетилен, водород и окись углерода. Ацетилен из продуктов реакции выделяют и очищают от гомологов и примесей. Водород выводят в цех синтеза аммиака. Чистый ацетилен на ртутном катализаторе окисляют в ацетальдегид, кротоновую и уксусную кислоты. Кетоны выделяют из продуктов реакции и разделяют на индивидуальные вещества. Ацетальдегид подвергается восстановлению до этилового спирта и в дальнейшем дегидрированием и конденсацией переводится в бутадиен на танталовом катализаторе. Из смеси, содержащей, помимо продуктов реакции, пепрореагировавшие, промежуточные и побочные вещества, выделяют бутадиен и совместной полимеризацией бутадиена и стирола при низкой температуре получают синтетический каучук (мощность установки 50 тыс. т год). [c.14]

    С над окисью алюминия (1915, способ, получивший промышленное использование в 1942— 1943 в США) и альдольной конденсацией ацетальдегида (1905, способ, реализованный в промышленном масштабе в Германии в 1936). Совместно с Ф. Ф. Кошелевым осуществил (1915) полимеризацию изопрена под действием света. Получил изопрен пиролизом скипидара ( изопреновая лампа Остромысленского ). Независимо от А. Вернера установил (1910), что олефины образуют окрашенные комплексы п тетранитрометаном. Пришел к выводу (1915) о том, что диолефины вообще образуются при дезагрегации более сложных молекул и что углеводороды, содержащие свыше четырех атомов углерода, в том числе циклопарафины, при пиролизе отщепляют молекулу предельного углеводорода и превращаются в бутадиен. В 1922—1926 продолжал изучение синтетического каучука и процесса его вулканизации без серы. Исследовал по заданию фирмы Истмен Кодак возможные области применения поливинилхлорида. [c.378]


Смотреть страницы где упоминается термин Бутадиен из ацетальдегида: [c.60]    [c.358]    [c.191]    [c.9]    [c.62]    [c.507]    [c.507]    [c.334]    [c.502]    [c.175]    [c.428]    [c.782]    [c.720]    [c.443]    [c.562]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.695 ]




ПОИСК





Смотрите так же термины и статьи:

Азеотропные смеси бутадиена с ацетальдегидом

Ацетальдегид

Ацетальдегид альдоль бутадиен из него

Ацетальдегид в синтезе бутадиена

Ацетальдегид извлечение из бутадиена-сырца

Бутадиен дивинил отмывка от ацетальдегида

Дивинил бутадиен ацетальдегида

Отмывка бутадиена от ацетальдегида

Получение бутадиена из ацетальдегида (четырехступенчатый процесс)



© 2025 chem21.info Реклама на сайте