Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен хлористым алюминием

    Для получения такого депрессатора (присадки для понижения температуры застывания масел типа парафлоу) конденсируют твердый парафин, хлорированный нри температуре 80 до содержания хлора, равного 14%, с нафталином в присутствии хлористого алюминия. В качестве разбавителя применяют хлористый этилен. Конденсацию ведут нри температуре 30— 35°, повышая ее перед концом реакции до 60°. [c.123]


    Для поддержания скорости реакции в процессе алкилирования можно также применять небольшие количества хлористого водорода как промотора для хлористого алюминия, путем добавления к этилену небольшого количества хлористого этила. [c.228]

    Так, например, пропуская этилен в третичный хлористый бутил при 10° в присутствии безводного хлористого алюминия или хлорного железа, получают кипящий при 116° хлористый гексил из третичного хлористого бутила и пропилена получают хлористые гептилы, кипящие в интервале 130—140° [125]  [c.196]

    При насыщении этиленом раствора безводного хлористого алюминия в ннтрометане при максимальной температуре 26° и давлении 6,3 аг происходит сильный взрыв [154]. [c.317]

    Хлористый цирконий. Алкилирование изобутана в присутствии хлористого циркония идет при более высоких температурах, чем в присутствии хлористого алюминия алкилирование этиленом идет приблизительно при 100° и при комнатной температуре, если алкилируются более высокомолекулярные олефины. [c.310]

    Реакцию изобутана с этиленом в присутствии хлористого алюминия можно описать при помощи следующих уравнений  [c.312]

    Растворы комплексов хлористого алюминия с окисленными соединениями, содержащие избыток хлористого алюминия, являются очень активными катализаторами в реакциях алкилирования изобутана этиленом. Этилирование идет уже при комнатной температуре в присутствии катализаторов, приготовленных смешением 1—3 молей хлористого алюминия и 1 моля ацетона, этилацетата или этилового эфира [12]. Комплексы, содержащие эквимолекулярные количества хлористого алюминия и ацетона, этилового эфира или метанола, также являются катализаторами. С другой стороны, растворы хлористого алюминия в молярном избытке этих органических соединений неактивны в реакциях алкилирования [39]. [c.321]

    Что реакция переноса водорода отчасти идет при этилировании в присутствии хлористого алюминия, показывает образование этана в количестве 7% [22]. Из катализаторного слоя был выделен гексаэтилбензол с выходом 14% на этилен. Выделение этого соединения указывает на то. что бензол образовался но реакции переноса водорода так как бензол гораздо легче, чем циклопарафиновые углеводороды, вступает в реакцию с олефинами, то весь образовавшийся бензол был полностью этилирован. [c.339]


    Развитие каталитического алкилирования относится к тридцатым годам нашего столетия. Впервые в 1932 г. было изучено алкилирование алканов этиленом на хлористом алюминии [173]. [c.58]

    Этилен не подвергается воздействию хлористого алюминия, если последний не активирован присутствием хлористого водорода. [c.140]

    Тяжелые фракции, полученные полимеризацией этилена, обладают до некоторой степени крутой вязкостно-температурной кривой [627, 628], но с увеличением молекулярного веса реагирующего олефина индекс вязкости улучшается Если наряду с хлористым алюминием используется металлический алюминий, то при реакции с этиленом также получаются фракции с более высоким индексом вязкости [630, 631]. В этом случае условия благоприятны для образования правильных полимеров (димеров, тримеров, тетрамеров и т. д.). [c.140]

    В промышленности осуществляют барботирование при —30 °С смеси этилена и НС1 (в избытке около 0,1 моль) через суспензию хлористого алюминия (0,5%) в хлористом этиле. Этилен предварительно сушат охлаждением до —30 °С, а НС1, — пропуская через концентрированную серную кислоту. Реакция протекает с очень большой скоростью образующийся хлористый этил непрерывно выводится из реактора. После осаждения увлеченного хлористого алюминия продукт промывают водой и щелочами и перегоняют под давлением. [c.279]

    Алкилирование толуола этиленом можно осуществлять в паровой фазе. Катализатором служит хлористый алюминий в виде суспензии в диэтилтолуоле, куда при интенсивном перемешивании и температуре 150-160°С вводят пары толуола в смеси с этиленом. Хлористый алюминий с равным количеством хлористого натрин может быть также нанесен на пемзу. В этом случае этилен с парами толуола пропускают над катализатором при температуре 260-280°С и давлении 12-18 атм. [c.7]

    Для получения хлористого этила в промышленных условиях сухой этилен и сухой хлористый водород в примерно эквимолекулярных количествах, при 35° и 2,5—3,0 ат нодают в реактор. Реакция идет в присутствии хлористого алюминия, растворенного в хлористом этиле (рис. 120). Образовавшийся хлористый этил испаряется [33]. [c.198]

    Для промышленного этилировапия бензола этиленом последний должен быть чистым. Он не должен содержать гомологов этилена, как пропен или бутен, потому что образование даже небольших количеств изопропилбен-зола может сильно мешать разделению бензола, моноэтилбензола и поли-этилбензола из-за налегания друг на друга температур кипения компонентов смеси. Этилен должен быть практически свободен также от кислорода и окиси углерода, так как эти газы увеличивают расход безводного хлористого алюминия. [c.228]

    Расход хлористого алюминия в промышленных условиях составляет около 2,5 кг на 100 КЗ моноэтилбензола, выход моноэтилбензола составляет, считая на бензол, около 94%, считая иа этилен 93%. [c.229]

    При конденсации 1-хлор-1-метилциклогексана и 1-хлор-1-этилцик-логексана (третичные хлориды) с этиленом в присутствии хлористого алюминия были получены 1-(2-хлорэтил)-1-метилциклогексан и 1-(2-хло1ъ [c.469]

    При конденсации вторичного хлорида (например, изопропилхлорида [47] или циклогексилхлорида [49]) с этиленом в присутствии хлористого алюминия обнаружены продукты взаимодействия одной молекулы хлорида с двумя молекулами олефина. Образование их может быть объяснено следующим образом первичные продукты реакции (изоамилхлорид и 2-циклогексилэтилхлорид, соответственно) содержат третичные атомы углерода, и происходит изомеризация промежуточных ионов карбония до третичных ионов. Так как третичные йоды карбония присоединяются к олефинам гораздо легче, чем вторичные, то образовавшиеся третичные ионы будут присоединяться гораздо быстрее, чем исходные вторичные ионы (изопропил и циклогексил). Поэтому конечные продукты подобны образующимся при конденсации этилена с соответствующими третичными хлоридами 1-хлор-3,3-диметилпентан и 1-(2-хлорэтил)-1-этилциклогексан, [c.220]

    Образование 2,3-диметилбутана в результате алкилирования изобутана этиленом в присутствии хлористого алюминия, активированного хлористым водородом, можно представить следующей схемой  [c.230]

    Так, при этилировании циклогексана в присутствии хлористого алюминия происходит присоединение катиона метилциклопептила к этилену с образованием катиона 2-(1-метилциклопентил) этила. Последний изомеризуется до иона 1,2-диметилциклогексила, которые вступают в реакцию с циклогексаном, в результате чего образуется 1,2-диметилциклогексан и катион циклогексила, перегруппировка которого дает катион метилциклопентила. [c.231]

    Галоидметаллы как катализаторы. В присутствии свежеприготовленного безводного хлористого алюминия этилен [22е] полимеризовался при 25° с образованием флуоресцирующей жидкости, 50% которой выкипало выше 200°. Жидкий нродукт, кипящий ниже 280°, состоял главным образом из парафинов, а вышекипящая часть содержала циклопарафины. Хотя смешанные полимеры обычно получаются в результате действия галоидметаллов типа катализаторов Фриделя—Крафтса на низкомолоку-лярные олефины, тем не менее нри определенных условиях в присутствии хлористого алюминия идет и истинна я полимеризация [64]. [c.201]


    Галоидалкилы. 1-хлор-3,3-диметилбутан получается при взаимодействии /иретге-бутилхлорида с этиленом в присутствии хлористого алюминия [13]. Это реакция идет, вероятно, по цепному карбоний-ионному механизму [19]  [c.227]

    Пром( Жуточная форма (V) содержит третичный углеродный атом и легко изомеризуется в третичный катион (VI), который более реакционноспособен, чем исходный вторичный катион циклогексила, и легко вступает в реакцию конденсации с этиленом, давая (VII). Так как последний не содержит третичного углеродного атома, он не подвергается дальнейшей конденсации и поэтому (VIII) является основным продуктом реакции. Правдоподобность этого механизма (и доказательство структуры, приписываемой продукту) подтверждается тем, что (VIII) получается также при взаимодействии третичного соедипения 1-хлор-1-этил-циклогексана с этиленом в присутствии хлористого алюминия. [c.232]

    Утверждение, что парафиновые углеводороды являются соединениями врагнт а или слишком малоактивными , было твердо и окончательно опровергнуто после того, как Ипатьев [20] и его сотрудники показали, что конденсация изопарафинов и олефинов идет даже при обычной температуре в присутствии кислотных катализаторов. В июне 1932 г. Ипатьев и Пайне показали, что хлористый алюминий, промотированный хлористым водородом, катализирует алкилирование гексдна этиленом. Позднее Гросс исследовал другие парафиновые углеводороды и катализаторы, в частности такой катализатор, как фтористый бор. Аналогичное алкилирование циклопарафинов изучал Комаревский. [c.304]

    Катализаторы. Как уже упоминалось выше, кислотные катализаторы можно подразделить на два класса соли галоидоводородных кислот тина Фриделя —Крафтса и кислоты, способные к переносу протона. Из последнего класса для промышленных процессов алкилирования предложены два катализатора — серная кислота и фтористый водород как наиболее подходящие, так как они являются жидкостями и обращение с ними проще. Однако алкилирование этиленом в их присутствии проходит нелегко, вероятно, вследствие устойчивости образующихся нри этом сложных этиловых эфиров. Этилирование изобутана проходит с исключительно высоким выходом в присутствии хлористого алюминия и некоторых других катализаторов типа катализаторов Фриделя—Крафтса. Разработан промышленный процесс производства 2,3-ди1 етплбутана по [c.309]

    Каталитическое алкилирование изобутана олефинами. Этиленом. Так как 2,3-диметилбутан отличается высокими антидетонационными свойствами и хорошими показателями работы на богатой рабочей смеси, этилирование изобутана стало предметом многочисленных исследований особенно после того, как было показано [16], что реакция в присутствии хлористого алюминия и хлористого водорода при 25—35° или в присутствии фтористого бора и фтористого водорода при 0—5° дает продукты, содержащие 45% гексанов, состоящих из 70—90% 2,3-диметилбутана, 10—25% 2-метилпентана и менее 3% 2,2-диметилпентана. [c.320]

    Циклогексан. При алкилировании циклогексана этиленом при атмосферном давлении и 50—60° в присутствии хлористого алюминия и хлористого водорода в качестве основных продуктов были получены диметил циклогексаны и тетраметилциклогексаны [22] обнаружено также присутствие 1,3-диметилциклогексана. [c.339]

    Существует большая разница в легкости введения различных олефинов в реакцию с ароматическими углеводородами. Изобутилен алкилирует ароматические углеводороды в присутствии 80—90% сорной кислоты, пропилен же требует болео сильеюй кислоты (до 96%). Этилену для алкилирования необходима приблизительно 98%-ная кислота. Так как кислота такой концентрации быстро превращает бензол и продукт алкилирования в сульфоновые кислоты, то применение сорной кислоты для этилирования ароматических соединений непрактично [170J. Для этой реакции лучшим катали. <атором является хлористый алюминий [281]. [c.430]

    Впервые алкилирование беизола этиленом описано Балсоном [1] в 1879 г. В качестве катализатора применялся хлористый алюминий. При условиях, избранных автором, вредш реакции было продолжительным, и в реакцию с образованием этилбензола вступало только 29 % этилена и 31 , о бензола. [c.490]

    При помощи нагрева и давления этилен можно превращать в полимерные жидкости. Под давлением 70—135 атм и при температурах между 325 и 385° С получены жидкие продукты, в которых около 50% кипит ниже 200°С [354, 355]. Конечные продукты содержат заметное количество нафтеновых углеводородов. Термическая полимеризация ускоряется следами кислорода [356 и видоизменяется меркаптанами [357]. При помощи концентрированной серной кислоты этилен не нолимеризуется вместо этого образуются устойчивые сложные эфиры. С 90%-ной фосфорной кислотой сложные эфиры образуются ниже 250° С, но свыше температуры 250—350° С и под давлением 53—70 кГ сл1 образуются полимеры, кипящие в пределах бензин — осветительный керосин. Это полимеры комбинированного типа, содержащие олефины, парафины, нафтены и ароматику с изобутеном в отходящем газе [358, 322]. При помощи чистого хлористого алюминия этилен не иолимеризуется даже под давлением, но если катализатор активирован влагой или хлористым водородом, то в зависимости от времени, количества катализатора и т. д., получаются жидкие продукты, находящиеся в пределах от бензина до масляных фракций [360]. Они онять-таки являются полимерами комбинированного тина. Бензиновая фракция, выкипающая до-200° С, является большей частью предельной и имеет октановое число около 77 это наводит на мысль о присутствии разветвленных структур. Высококипящие порции дистиллята содержат [c.109]

    При помощи реакций катализированного алкилирования этилен дает изопарафипы более медленно, чем высшие олефины, однако он реагирует в существенных размерах, если в качестве катализаторов применяются трифтористый бор или хлористый алюминий [538—540]. Пропилен вступает в реакцию алкилирования даже в присутствии серной кислоты, если ее концентрацию поднять примерно до 100%. Олефины выше бутенов достаточно активны, но не всегда удовлетворяют в отношении конечных [c.127]

    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]

    Особый интерес представляют смазки, получавшиеся синтетическим путем в Германии в условиях военного времени [55, 56]. Этилен и олефины с более длинной цепью полимеризовали (катализатор — хлористый алюминий), получая с хорошим выходом масла, которые обладают неплохими вязкостно-температурными свойствами. Парафинистый газойль, полученный синтезом по Фишеру — Тропшу, хлорировали продукт синтеза конденсировали с нафталином, что дало масло сравнительно невысокого-качества. В качестве смазочных масел использовались эфиры адипиновой кислоты, но себацинаты широкого распространения не получили. [c.501]

    Аскантщетно пытавшийся полимеризовать этилен в присутствии хлористого алюминия, предпринял такие же опыты над амиленом этот последний при обработке на хол оду равным по весу количеством хлористого алюминия даёт нафтеновые углеводороды с высокой температурой кипения, с меньпгим содержанием водорода, чем у полнметиленовых углеводородов, и по свойствам аналогичные смазочным маслам. Содержанке парафиновых углеводородов возрастает вместе с температурой. [c.324]

    Ипатьев и Рутала изучали дейст м на этилен хлористого цинка и алюминия при 275° и при начальном давлен1ш 70 от. [c.325]

    Ганглов и Гендерсон показали, что этилен при нагревании с хлористым алюминием в закрытом сосуде дает черную смолистую массу с высоким содержанием свободного углерода.  [c.325]


Смотреть страницы где упоминается термин Этилен хлористым алюминием: [c.148]    [c.148]    [c.229]    [c.260]    [c.219]    [c.220]    [c.222]    [c.228]    [c.231]    [c.310]    [c.310]    [c.316]    [c.319]    [c.141]    [c.142]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.217 ]




ПОИСК







© 2025 chem21.info Реклама на сайте