Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активированный уголь как катализатор

    Получение винилацетата методом винилирования состоит во взаимодействии ацетилена с уксусной кислотой. В качестве катализатора применяют ацетат цинка, нанесенный на активированный уголь. Гетерогеннокаталитическое взаимодействие ацетилена с уксусной кислотой проводят в газовой фазе при 170—220°С. Механизм реакции состоит в хемосорбции ацетилена с образованием п-комплекса с ионом цинка, внутрикомплексной атаке активированной молекулы ацетилена ацетат-ионом и заключительном взаимодействии с уксусной кислотой  [c.299]


    Существует две разновидности процессов демеркаптанизации топлив, в одной из которых катализатор - фталоцианин кобальта - применяется в растворённой в водно-щелочном растворе форме, в другой - катализатор нанесён на твёрдый носитель, в качестве которого обычно используется активированный уголь. [c.21]

    Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Р1, Рё, N1, Со, Ад). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. В качестве носителей используют окиси алюминия, алюмосиликаты, окиси хрома или кремния, активированный уголь. [c.83]

    Код-904. Катализатор получения винилхлорида из ацетилена и НС1 представляет собой активированный уголь (91%) с размером частиц 1,7—4,7 мм, пропитанный хлорной ртутью (9%). [c.315]

    Окисление сероводорода. Этот метод применяют для получения элементарной серы. Катализатором служит влажная гидроокись железа или активированный уголь, которые эффективны при комнатной температуре в отсутствие катализатора для проведения этой реакции требуется температура свыше 400 °С. На некоторых новых заводах используют активированный боксит с высоким содержанием железа объемная скорость при этом составляет 1000—2000 температура от 260 до 399 С. [c.326]

    В настоящее время в общем газовом анализе часто применяют сжигание свободным кислородом в присутствии катализаторов. Из больного числа исследованных катализаторов наилучшие результаты получены с металлическими платиной и палладием. Пал.тгадий и платину применяют в виде проволочной спирали, впаянной в верхнюю часть стеклянной шшетки (рис. 4), или в осанчденнсм виде на носителях (асбест, активированный уголь, керамика), С лучшими образцами катализаторов этого типа [2,31 водород количественно окисляется при комнатной температуре, а метан сгорает при 400—500° С. [c.29]

    Сначала нагревают активированный уголь (катализатор) в течение примерно двух минут. Затем на небольшом пламени горелки ила [c.66]

    Винилхлорид получают из ацетилена и хлористого водорода в трубчатом реакторе при температуре 93 °С и избыточном давлении от 0,14 до 0,35 ат. Катализатором является активированный уголь, пропитанный хлорной ртутью. [c.334]

    К раствору палладийхлорпстоводородной кислоты добавляли предварительно откачанный в вакууме активированный уголь с таким расчетом, чтобы получить катализатор, содержащий 10% палладия. Активированный уголь, пропитанный палладийхлористоводородной кислотой, к которому был добавлен формалин, охлаждали до 0°С и к нему осторожно добавляли по каплям 50%-ный раствор едкого калия так, чтобы температура реакционной смеси не превышала 5°С. [c.99]


    Газовая смесь поступает в реактор (рис.149), представляющий собой трубчатую печь, в которой находится катализатор — активированный уголь, пропитанный хлорной ртутью. Перед началом реакции температура в реакторе при помощи теплоносителя доводится до 140 . [c.245]

    В качестве катализаторов применяют различные вещества, например активированный уголь [39], кизельгур, пемза [40], глинозем, каолин, силикагель и боксит, как без добавок, так и пропитанные солями металлов, в частности, солями меди [41]. [c.153]

    Наиболее известными катализаторами являются серная и сернистая. кислоты, хлористый алюминий, хлористый цинк, фосфорная кислота, а также некоторые твердые вещества, обладающие адсорбционными свойствами, например, активированный уголь, флоридин и т. п. [c.92]

    Образование олефинов из сульфохлоридов происходит почти количественно, если жидкий сульфохлорид при температуре 200—300° по каплям стекает на катализатор, например глинозем, силикагель, активированный уголь в чистом виде или пропитанный солями металлов. [c.386]

    Приготовление катализатора. Активированный уголь предварительно очищали следующим образом уголь кипятили в течение 1 часа в 15%-ном растворе едкого калия, после чего промывали горячей дистиллированной водой до удаления щелочи. Затем активированный уголь в течение 1 часа кипятили в 15%-ном растворе азотной кислоты н промывали дистиллированной водой до удаления кислоты. Обработанный таким образом уголь сушили при 100°С. Активность угля по диэтиловому эфиру — 40%. [c.99]

    В работе [90] на примере гидрирования циклопропана исследована удельная каталитическая активность ряда нанесенных и ненанесенных металлических катализаторов и определена активная поверхность металла. В качестве катализаторов использовали Ni, Со, Мо, Rh, Pt и Pd, нанесенные на А Оа, кизельгур и активированный уголь, а также Pt- и Pd-черни. Активность и поверхность катализаторов определяли методом импульсного отравления поверхностных активных центров оксидом углерода. Установлено, что наиболее активными и селективными являются Ni-катализаторы, восстановленные при 360 °С. Показано, что в присутствии Ni, Со, Мо и Rh проходит как гидрогенолиз циклопропана, так и его гидрокрекинг на Pt и Pd крекинг не протекает. По общей активности исследованные катализаторы располагаются в ряд Rh > Ni > Pd > Pt > Мо > Со, по активности в реакции гидрокрекинга получен иной ряд Ni > Со > Мо > Rh > Pt, Pd. Эти результаты показывают, что примененный метод с использованием гидрогенолиза циклопропана в качестве модельной реакции дает возможность быстро и достаточно точно определять удельную активность металлсодержащих катализаторов и поверхность металла. Полученные результаты хорошо согласуются с данными, найденными классическими методами. [c.104]

    Винилацетат синтезируют в паровой фазе из ацетилена и ледяной уксусной кислоты при температуре 177—205 °С и избыточном давлении 0,14—0,21 ат, объемная скорость от 300 до 400 катализатором служит активированный уголь, пропитанный уксуснокислым цинком в количестве 20—30%. [c.334]

    Ни двуокись кремния, ни окись алюминия сами по себе не являются эффективными в промотировании реакций каталитического крекинга. В действительности они (а также активированный уголь) промотируют термическое разложение углеводородов [249, 250]. Смесь безводных двуокиси кремния и окиси алюминия тоже не проявляет достаточной эффективности. Катализатор с высокой активностью получается только из гидроокисей с последующей частичной дегидратацией (кальцинированием). Остающееся малое количество воды необходимо для нормальной работы катализатора. Исследования, проведенные с применением окиси дейтерия, показали, что эта вода участвует в реакциях обмена водородом между катализатором и молекулами углеводородов, причем указанные реакции начинаются при температурах, значительно более низких, чем температуры крекинга [262, 265]. [c.340]

    Второй способ гидратации олефинов в спирты заключается в прямом каталитическом присоединении воды по олефиновой двойной связи. В этом процессе олефин (этилен) вместе с водяным наром при высоких температуре и давлении пропускается над соответствующим катализатором, напрпмер фосфорной 1Шслотой, нанесенной на кизельгур, активированный уголь или асбест. Процесс прямой каталитической гидратации представляет собой равновесный процесс, поэтому при однократном пропуске компонентов реакции через печь только небольшой процент олефинов превращается в спирты, так что требуется вести процесс с многократной циркуляцией реагирующих веществ, требующей довольно значительных затрат энерглп. Несмотря на это процесс прямой гидратации все же дешевле. [c.199]

    Юрьев и Павлов [150] изомеризовали н-октан в изооктан при 300— 310 в струе водорода. В качестве катализаторов были использованы платина на активированном угле, никель на окиси алюминия, никель на окиси цинка, окись алюминия и активированный уголь. Катализаторов брали около 20% по отношению к носителям. Изшеризация в присутствии платины на угле достигала приблизительно 15%, в присутствии нкк ля на окиси цинка — приблизительно 10%, другие катализаторы оказались менее активными. [c.35]


    Антрацит, Фя = 0,63 Активированный уголь Катализатор Фишера — Тропша, Фа = 0,58 Карборунд [c.75]

    При получении технологического газа для синтеза аммиака содержащиеся в исходном сырье соединения серы переходят в состав газа. Присутствующие в газе неорганические и органические соединения серы являются вредными примесями, вызывающими коррозию аппаратуры, отравление катализаторов, ухудшение качества продукции и загрязнение атмосферы. Применяются следующие способы очистки газов от серы. Неорганическую серу удаляют сухими способами — с помощью гидроокиси железа или окислением НгЗ на активированном угле и жидкостными способами — поглощением мышьяково-содовым и мышьяковоаммиачным растворами, растворами этаноламинов, низкотемпературной абсорбцией органическими растворителями. Для очистки от органической серы в качестве сорбентов используют активированный уголь, катализаторы, соединения цинка, железа, марганца, а также хемосорбенты. На выбор способа очистки газа от серы большое влияние оказывает химический состав серосодержащих примесей и другие факторы. [c.81]

    Опыты по нанесению катализатора на активированные угли, испытанию активности катализаторов и окислительной демеркаптанизации дизельного топлива проводили на установке непрерывного действия (рис.2.4). В качестве реактора используют стеклянную насадочную колонку (1) диаметром 20 мм и высотой 200 мм, снабжённую обратным холодильником и контактным термометром (2). Обогрев реактора осуществляют с помощью нихромовой спирали, регулирование температуры - контактным термометром и электронным реле (5) с точностью 0,5"С. В качестве носителей используют древесный уголь и активированные угли марок КАД-Д, АГ-3, АГ-5, СКТ, АР-3 в качестве катализатора - натриевые соли сульфофталоцианинов кобальта и полифталоцианина кобальта. Активированный уголь загружают в реактор одним слоем высотой 100 мм на пористую перегородку (10). Нанесение фталоцианина кобальта на активированные угли проводят путём циркуляции его 0,5 %-ного водного раствора через носитель при комнатной температуре. Подачу раствора катализатора и очищаемых углеводородов в реактор осуществляют перистальтическим дозировочным насосом (6), скорость подачи кислорода и воздуха в реактор измеряют ротаметром (8) и регулируют игольчатым вентилем. Через определённые промежутки времени в растворе определяют содержание фталоцианина кобальта на приборе ФЭК-56 по оптической плотности. [c.35]

    Гетерогенный катализ применяется главным образом при газофазном хлорировании. В качестве катализаторов используют активированный уголь, пемзу, отбеливающие земли и т. п., пропитанные металлическими солями, особенно медными. В соответствии с теорией Тэйлора их действие основано на способности их активных центров вызывать ионизацию хлора. Гетерогенное каталитическое хлорирование протекает по криптоионному механизму и нечувствительно к обрыву цепи, особенно если оп вызывается кислородом. Благодаря этой нечувствительности к кислороду становится возможной разработка такого процесса хлорирования, при котором хлор будет использоваться целиком именно потому, что процесс будет проходить в присутствии кислорода. При этом применяются такие контактные массы, которые делают возможным превращение образовавшегося хлористого водорода под воздействием кислорода в воду и хлор [,5]. [c.113]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    На установке Мерокс Куйбышевского НПЗ для демеркаптанизации бензинов термического крекинга использовался гетерогенный фталоцианиовый катализатор (фталоцианин кобальта, нанесенный из этанольного раствора на активированный уголь). [c.78]

    ЛИЗ— Проходит с разрывом кольца по направлению 1 [74, 75]. В наиболее чистом виде эта реакция осуществляется на платинированном угле. На других катализаторах, например платинированном кизельгуре или палла-дированном угле, всегда получаются в большем или меньшем количестве алканы, которые на первый взгляд образуются по направлению 2 [76, 77]. Однако оказалось, что эта схема не осуществляется в таком простом виде и что циклопропаны в присутствии некоторых контактов изомеризуются в алкены с открытой цепью [78— 81]. Катализаторами для этой реакции служат силикагель ( 50°С), аморфные и кристаллические алюмосиликаты (50—200°С), кизельгур (120°С), пемза (170— 200 °С), активированный уголь ( 200°С). При этом в отличие от гидрогенолиза всегда раз.рываются связи цикла, прилегающие к наименее гидрогенизованному углеродному атому цикла  [c.101]

    Исследовано [261] гидродеалкилирование толуола в присутствии металлов, отложенных на полиамидах. Исследована активность и селективность Р1, КЬ и Р(1 (0,4—5,1% металла), нанесенных на поли-п-фенилентерефталамид, при 140—400 °С. Показано, что катализаторы, полученные нанесением соединений металлов на этот полиамид, имеют низкую гидрирующую активность, в то же время реакция гидродеалкилирования протекает на них при более низких температурах, чем на катализаторах, где в качестве носителей применяются АЬОз или активированный уголь. Был сделан вывод, что гидрирующая активность и селективность металлов, отложенных на полиамидах, обусловлена влиянием носителя и образованием поверхностных активных комплексов. Предполагают, что в этих комплексах атомы переходного металла с валентностью больше нуля координационно связаны с амидной группой полимерной цепи. [c.175]

    Анализируя данные по Сз-дегидроциклизации углеводородов на Pt/ , можно констатировать отсутствие каких-либо признаков того, что реакция протекает по схемам ионного или радикального механизмов. Действительно, ионы, например карбениевые ионы, образуются в реакциях с участием кислотно-основных катализаторов, к которым в первую очередь относятся катализаторы реакции Фриделя — Крафтса, цеолиты, оксид алюминия и пр. По-видимому, ни платина, ни ее носитель — березовый активированный уголь — не являются подобными катализаторами кислотного типа, хотя следует учитывать, что природа древесного угля изучена еще недостаточно подробно. Необходимо подчеркнуть, что ка-талиэаты, получаемые в результате Сз-дегидроциклизации на Pt/ , в основном состоят из исходного углеводорода (алкан или алкилбензол) и соответствующего ему циклана. Продукты с более низкой и более высокой молекулярной массой, образование которых, как правило, наблюдается в реакциях, протекающих как по ионному, так и по радикальному механизмам, практически отсутствуют. Следует добавить, что сравнительно мягкие условия реакции Сз-дегидроциклизации (270— 300 °С, атмосферное давление) исключают, по-видимому, возможность возбуждения молекулы исходного углеводорода до состояния свободного радикала или разрыва ее на осколки — радикалы. Таким образом, протекание в присутствии Pt/ Сз-дегидроциклизации по радикальной или по ионной схеме маловероятно. [c.207]

    Жидкофазпое хлорирование углеводородов проводится под давлением. При этом в качестве переносчиков хлора могут использоваться хлориды фосфора, сурьмы, железа, олова и некоторых других элементов. Для тех же целей годны тетраэтилсвинец, диазометан и другие соединения [135]. В качестве гетерогенных катализаторов используют кизельгур, пемзу, активированный уголь и окись алюминия. Указанные вещества применяют или в чистом виде или пропитывают солями различных металлов. Часто для указанных целей применяют соли меди. [c.119]

    Предпочтительными источниками карбоний-ионов являются олефины (разд. 1У.2) например, при 300° С и 300 атм (2941 10 Па) на катализаторе Н3РО4, нанесенном на активированный уголь [5, протекает реакция [c.191]

    Промышленный процесс окислительной демеркаптанизации топлив был разработан в 1960 году фирмой UOP (Universal Oil Produ tion) под названием Мерокс-демеркаптанизация и к 1991 году число работающих установок достигло 1450. В процессе Мерокс окисление меркаптанов проводится кислородом воздуха в щелочной среде в присутствии металлофталоцианиновых катализаторов. Катализатор окисления может быть нанесен на твердый стационарный носитель (активированный уголь), либо растворен или суспензирован в щелочном растворе [90,91,114-116.  [c.20]

    На эксплуатируемой в промышленности установке Мерокс нанесение катализатора на активированный уголь осуществляется циркуляцией через реактор этанольного раствора катализатора. В настоящей работе изучалось нанесение ИВКАЗа и полифталоцианина кобальта из водного, воднощелочного (10 %-ного раствора NaOH) и этанольного растворов. На рис. 3.5 приведены кривые нанесения ИВКАЗа из этанольного, водного и воднощелочного растворов. Катализаторы ИВКАЗ и ПФК существенно не отличаются. [c.65]

    Как видно из таблицы 3.7, наибольшую степень окисления н-додецилмеркаптана обеспечиваЮ Т катализаторы на основе углей марок АГ-3 и АГ-5. Активированный уголь АГ-5 без катализатора проявляет низкую каталитическую активность. Наибольшей удельной каталитической активностью обладает катализатор на угле СКТ. Однако с этим катализатором не достигается необходимая степень очистки. Таким образом, катализаторы, приготовленные нанесением фтгиюцианина кобальта на ак1 ивированные угли АГ-3 и АГ -5, являются р(аиболее активными катализаторами для окисления меркаптанов. [c.68]

    Из приведенных в табл. 71 данных видно, что нанесение сульфида молибдена на активированный уголь увеличивает его удельную гидрирующую активность и понижает удельную изомеризующую активность в сравнении с чистым МоЗ . При этом нужно учитывать, что величины превращения циклогексана, вероятно, завышены из-за возможности чисто термической изомеризации, которая в холостых опытах без катализатора составляла 0,1—0,3%. Разведение облегчает, судя по мольному отношению 3 Мо, удаление нестехиометри-ческой серы (свежеприготовленный катализатор имеет формулу МоЗа,2 — МоЗа,з). [c.267]

    Когда говорят о типах катализаторов, используемых для данной реакции гидрирования, обычно указывают только, что катализатор никелевый или из благородного металла можно сказать, что катализатор принадлежит к группе железа. Однако все эти термины дают весьма неоднозначное описание, в котором соседствуют дезинформация и правда. Например, катализатором группы железа может быть никель, железо или кобальт, причем в одной или нескольких различных формах. Как правило, это нанесенные катализаторы, т. е. полученные осаждением металла на носитель или пропиткой его раствором соли металла. В качестве носителей чаще используют инфузорную землю (кизельгур), порошкообразные оксид кремния и активированный уголь, оксиды магния и редкоземельных элементов, оксид алюминия или молекулярные сита. (Существует много типов окспда алюминия, и каждый из них оказывает свое положительное или отрицательное влияние на получающийся катализатор.) В задачу данной главы не входит описание приготовления катализаторов, которое слишком сложно. Отметим только, что, называя катализатор никелевым, мы не даем ему адекватной характеристики. Даже если назван носитель, то еще нельзя определить, как будет работать катализатор. Свойства катализатора сильно зависят от способа его приготовления, типа носителя, наличия промоторов, введенных сознательно или случайно попавших при осаждении. Способы восстановления и стабилизации катализатора также могут оказать решающее воздействие на его эксплуатационные характеристики, в том числе на активность и селективность. [c.108]

    Кроме терхмнческого, фотохимического и химического иницииро-нания существует каталитический (или термокаталитический) способ ироведения процесса, когда используют гетерогенные катализаторы (активированный уголь и др.). В их присутствии происходит снижение энергии активации, и хлорирование протекает liipn температуре, на 100—150 °С более низкой, чем при термическом процессе. Однако механизм действия этих катализаторов до сих лор неясен. [c.106]

    Фтористый винил СНз—СНГ получают присоединением фтористого водорода к ацетилену в присутствии катализаторов, например сулемы и хлорида бария, нанесенных на активированный уголь. Побочным продуктом является этилиденфторид  [c.168]

    Катализаторы крекинга дихлорэтана должны были бы уменьшить рабочую температуру без снижения конверсии илн повысить конверсию при данной температуре. На первых установках для получения ВХ в качестве катализаторов крекинга использовали пемзу и древесный уголь [3]. По рекламным данным, компания Вакер-хеми применила как катализатор крекинга хлорид бария, нанесенный на активированный уголь [4]. Во многих патентах описаны катализаторы крекинга и их промоторы, но трудно определить, какие из них применяются в промышлеиности. Чаще всего упоминаемые катализаторы и промоторы — это графит, активированный уголь, хлориды металлов (например, u l2, Zn b), хлор, тетрахлорпд углерода, иод н различные галогенированные алканы. [c.258]


Смотреть страницы где упоминается термин Активированный уголь как катализатор: [c.198]    [c.205]    [c.242]    [c.243]    [c.56]    [c.47]    [c.112]    [c.243]    [c.367]    [c.134]    [c.23]   
Смотреть главы в:

Физико-химия коллоидов -> Активированный уголь как катализатор


Химический тренажер. Ч.1 (1986) -- [ c.12 , c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Активированный уголь

Активированный уголь, абсорбция сероводорода как катализатор при гидролизе

Дегидрирование высших парафиновых углеводородов в присутствии катализаторов на основе активированного древесного угля

Катализатор активирование

Катализаторы кобальт на активированном угле, полимеризация пропилена

Катализаторы на угле

Катализаторы никель на активированном угле, активация

Палладий на активированном угле (катализатор)

Платина на активированном угле (катализатор)

Уголь активирование

Уголь активированный как катализатор амилена

Уголь активированный как катализатор выхода его

Уголь активированный как катализатор изопропилового спирта

Уголь активированный как катализатор коксовании

Уголь активированный как катализатор метана

Уголь активированный как катализатор метана с фтором

Уголь активированный как катализатор паром

Уголь активированный как катализатор пиролизе

Уголь активированный как катализатор получение

Уголь активированный как катализатор помощи его

Уголь активированный как катализатор посредством его

Уголь активированный как катализатор при его перегонке

Уголь активированный как катализатор при окислении

Уголь активированный как катализатор при пиролизе метилхлорида

Уголь активированный как катализатор при полимеризации олефино

Уголь активированный как катализатор при присоединении цианистого водорода к ацетилену

Уголь активированный как катализатор при реакции метана с водяны

Уголь активированный как катализатор при реакции метана с паром

Уголь активированный как катализатор при хлорировании

Уголь активированный как катализатор при хлорировании углеводородов

Уголь активированный как катализатор реакция с аммиаком

Уголь активированный как катализатор чистый



© 2025 chem21.info Реклама на сайте