Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогены анализ смеси

    Преимуществом газохроматографического анализа смесей свободных галогенов является возможность определения нескольких элементов в одной пробе. Элементный анализ органических соединений на С, С1г и Вг сводится к хроматографическому разделению газов (О2, СО2, СЬ, Вга и ЗОг), образующихся при сжигании навески анализируемого вещества в платиновой лодочке при 800 °С. Получающуюся смесь продуктов сгорания (СЬ, Вгг, СО2) конденсировали в ловушке с жидким азотом, а затем хроматографировали на колонке с силиконовой смазкой на хромосорбе Р [128]. Кислород и сера не мешали определению. [c.77]


    Баются в кварцевых гильзах с серебром и золотом соответственно [4—6]. Остаток в контейнере представляет собой смесь металлического рутения и его двуокиси, что было установлено по весу остатка после восстановления водородом и подтверждено данными рентгенофазового анализа. На примере анализа комплекса рутеноцена с хлорной ртутью было найдено, что для количественного разложения последней необходимо вести сожжение при температуре 700° С. Возможно, что в случае анализа соединений, не содержащих связей галоген — ртуть, температура разложения может быть понижена. [c.300]

    Выполнение анализа. Навеску вещества помещают в колбу емкостью 100—250 мл, соединенную с пришлифованным обратным холодильником, и смешивают с необходимыми количествами растворителя и омы-ляющего реагента. Продолжительность омыления и необходимая температура могут быть очень различными и при исследовании соединений с неизвестной реакционной способностью их определяют эмпирически. После окончания реакции смесь подкисляют азотной кислотой и определяют галоген обычным способом. [c.239]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]


    Описанный метод можно использовать для анализа смесей НС], НВг и Вгз. Свободный галоген определяют в одной аликвотной пробе иодометрическим методом, а в другой его восстанавливают до бромида действием FeS04 смесь галогенидов ана.дизируют поляризационным титрованием. [c.137]

    В аналитической химии брома применяют газовую и газожидкостную хроматографию. В первой из них пользуются твердыми сорбентами, во второй — нелетучим, так называемым неподвиж-пым, растворителем, нанесенным на поверхность зерен неактивного носителя, заполняющего колонку. Анализируемую смесь в количестве нескольких микролитров вводят через самоуплотняющуюся диафрагму в обогреваемый испаритель, и образовавшиеся пары переносятся потоком инертного газа-носителя (Аг, Не, Hj, Ng) в верхнюю часть колонки с сорбентом. Перемещаясь по высоте слоя, смесь делится па компоненты, которые попадают в детектор, преобразующий изменения концентрации в потоке в электрические сигналы, регистрируемые самопишущим потенциометром. Узлы хроматографа, соприкасающиеся с анализируемой смесью в случае непосредственного определения галогенов или их водородных соединений, должны быть изготовлены из коррозионноустойчивого материала, чаще всего из стекла. Это требование отпадает, если анализ ведут методами реакционной хроматографии, сочетающими химическое превращение этих компонентов реакционной смеси с хроматографическим разделением полученных менее активных продуктов. Органические бромпроизводные обычно определяют непосредственно в типовой хроматографической аппаратуре, но иногда они подвергаются химическим изменениям до или после разделения на колонке. [c.141]

    Основным физическим методом, использованным при открытии изотопов стабильных элементов, стал метод катодных лучей, впервые применённый для анализа масс элементов Дж.Дж. Томпсоном — метод парабол [5. Исследуя газовую составляющую воздуха, Томпсон в 1913 году впервые наблюдал раздвоение на фотопластинке параболы, описывающей массы атомов инертного газа неона, что было невозможно объяснить присутствием в катодных лучах какой-либо с ним связанной молекулярной составляющей. Война прервала эти работы, но сразу с её окончанием Ф. Астон, работавший до войны с Томпсоном, вернулся к этой тематике и, критически пересмотрев метод парабол, сконструировал первый масс-спектрограф для анализа масс изотопов, имевший разрешение на уровне 1/1000 [6. В 1919 году он использовал новый прибор для исследования проблемы неона и показал, что природный неон является смесью двух изотопов — Ые-20 и Ме-22 [7], так что его химический атомный вес 20,2 (в единицах 1/16 массы кислорода), отличный от целого числа 20, можно объяснить, предполагая, что естественный неон — смесь двух изотопов, массы которых близки к целым числам, смешанных в пропорции 1 10. Тем самым Ф. Астон впервые убедительно экспериментально доказал принципиальное существование изотопов стабильных элементов, которое уже широко дискутировалось в то время в теоретических работах В. Харкинса в связи с проблемой целочисленности атомных весов [8]. Получив прямое подтверждение существования изотопов неона, Астон вскоре на том же приборе, развивая успех, показал сложный изотопный состав хлора, ртути, аргона, криптона, ксенона, ряда галогенов — иода, брома, нескольких элементов, легко образующих летучие соединения — В, 51, Р, 5, Аз, и ряда щелочных металлов — элементов первой группы таблицы Менделеева. Он также зафиксировал шкалу масс ядер, положив в её основу кислород (0-16) и углерод (С-12), в то время считавшихся моноизотопными, и провёл сопоставление их масс. К концу 1922 года им были найдены наиболее распространённые изотопы около трёх десятков элементов (см. табл. 2.1), за что 12 декабря 1922 года он получает Нобелевскую премию. Несколько раньше (1920) он, проанализировав первый экспериментальный материал, формулирует эмпирическое правило целочисленности атомных весов изотопов в шкале 0-16 [9]. В 1922 году в исследовании изотопов к нему присоединился А. Демпстер, предложивший свой вариант магнитного масс-спектро-метра с поворотом исследуемых пучков на 180 градусов [10]. Он открыл основные изотопы магния, кальция, цинка и подтвердил существование двух изотопов лития, найденных перед этим Ф. Астоном и Дж.П. Томпсоном (табл. 2.1). [c.39]

    Образец должен растворяться в неподвижной фазе. Если растворимость образца очень мала, то проба слишком быстро пройдет через колонку без какого-либо разделения. Смесь кислорода и углекислого газа разделяется на многих колонках с адсорбентами, но дает обычно один общий хроматографический пик на выходе из колонки с насадкой из носителя, покрытого неподвижной жидкой фазой. Другой, хотя и менее показательный, пример - Очень быстрый выход многих органических соединений из колонок с галогенуглеводородны-ми неподвижными фазами, такими, как кепь Р и галоген-углеводородное масло. Эти фазы часто применяют в анализах коррозионно-активных веществ и галогенсодержащих соединений, но лишь в немногих других с 1учаях их применение дает удовлетворительные результаты. [c.87]


    Органич. К. а. резко отличается от неорганич. анализа. Подавляющее большинство органич. соединений имеет ковалентный характер и потому каждое из них должно идентифицироваться индивидуально. Для этого сначала проводят реакции, определяющие принадлежность соединения к к.-л. классу органич. соединений, а затем — реакции, характерные для данного соединения. В органич, К. а. смесь веществ первоначально разделяют, основываясь на их разной летучести, растворимости или сорбции. К легколетучим относят вещества с т. кин. ниже 160°, к труднолетучим — ст. кип. выше 160°. Затем вещества разделяют по классам согласно их растворимости, преим. в воде и эфире. Наконец, применяют групповые реакции, с помощью которых устанавливают присутствие классов химич. соединений (спирты, фенолы, кислоты, амины и проч.). Некоторые химич. реакции позволяют перевести малоразличимую смесь веществ в вещества с достаточно различными физич. свойствами, что дает возможность отделять их далее посредством дистилляции или растворением. Напр., можно превратить смесь поликарбоновых к-т и аминокислот в летучие сложные эфиры, сравнительно легко разделяемые. При идентификации выделенного чистого вещества большое значение имеет элементарный К. а., проводимый обычными методами для открытия углерода, водорода, азота, серы, галогенов, фосфора, мышьяка и металлов, а также испытание основных физич. свойств (темп-р плавления и кипения, растворимости и определение молекулярного веса). См. также Элементарный анализ, Функциональный анализ. [c.252]

    Природные галогенсодержащие органические соединения были обнаружены лишь в середине XIX в., поэтому первые методики определения галогенов были предназначены для анализа синтетических продуктов. Чтобы отщепить бром, А. Кекуле [477] кипятил галогензаме-щенные органические кислоты с амальгамой натрия и водой. А. Густавсон [478] в этих же целях применял ме-тилат натрия реакцию он проводил в герметически закрытом сосуде. Впоследствии для отщепления галогенов начали применять и другие соединения, в частности спирты. Если такая обработка оказывалась неэффективной, образец сжигали или разлагали кислотой. О. Эрдман [479] просто прокаливал исследуемые соединения с известью. В 1857 г. Р. Пириа [480] предложил применять смесь извести с содой. Он помещал образец в платиновый тигель, а затем опрокидывал его в большой тигель, заполненный смесью соды с известью. [c.187]

    Выполнение анализа. В заплавленную с одного конца трубку из тугоплавкого стекла длиной около 50 см и диаметром 10 мм насыпают слой чистейшей порошкообразной окиси кальция высотой 5 см, затем вносят 0,1—0,3 г исследуемого вещества и поверх него насыпают слой окиси кальция высотой 5 см. Полученную смесь тщательно перемешивают медной проволокой и поверх смеси насыпают еще один слой окиси кальция высотой 10 см. Трубку поворачивают в горизонтальное положение и, постукивая по ней, создают воздушный канал, проходящий над всем наполнением. Затем трубку нагревают 30—60 мин примерно до 650° С, начиная нагревание с открытого конца трубки. По охлаждении содержимое трубки переносят в стакан и подкисляют разбавленной азотной кислотой. Раствор фильтруют от частичек угля и определяют в фильтрате галоген — весовым или объемным методом. В то время как при исследовании соединений, содержащих хлор и бром, почти всегда получаются хорошие результаты, при анализе соединений, содержащих иод, требуются особые предосторожности, предупреждающие потерю иода в виде элементарного иода [c.229]

    Процессы ионного обмена наиболее широко распространены в природе, так как заряженные частицы — ионы — встречаются в растворах чаще, чем нейтральные молекулы. Нейтральная молекула представляет собой частный случай частицы, у которой число положительных и отрицательных зарядов равно. Она является только одним звеном вернеровского ряда комплексных частиц все остальные члены этого ряда несут электрические заряды — положительные или отрицательные. Примеры таких рядов были найдены Вернером для комплексных соединений кобальта, хрома и других металлов при замещении в аквакомплексных соединениях молекул воды на ионы хлора или других галогенов и при аналогичных замещениях молекул аммиака в аммиачных комплексах. С тех пор примеры таких рядов комплексов значительно умножились [1]. Такие же ряды комплексных соединений можно привести и для органических веществ [2]. Таким образом, ионообмен должен быть основным процессом, при рассмотрении природных явлений, протекающих в минералах, горных породах и почвах, а также в некоторых технологических процессах. Важное значение ионного обмена в природе было отмечено различными авторами. Еще в 1845 г. Томсон и Спенс [3] установили, что если взять смесь мела с сульфатом аммония, то при промывании водой такой колонки из нее переходит в фильтрат сернокислый кальций вместо сернокислого аммония. В 1852—1856 гг. Вай установил, что 1) почва способна к обмену катионов аммония, калия, магния, кальция в эквивалентных соотношениях, причем концентрация анионов остается неизменной 2) обмен возрастает с увеличением копцептрации соли в растворе, достигая некоторого максимума 3) обмен ионов проходит быстро 4) катионный обмен происходит на глине, которая содержится в почве 5) при взаимодействии растворов алюмината натрия можно приготовить искусственно алюмосиликат, на котором можно проводить катионный обмен, как на глинах. Вай установил большое значение ионного обмена для жизнедеятельности растений на различных почвах. В 1908 г. на особое значение ионообменной сорбции обратил внимание академик К. К. Гедройц, систематически изучавший взаимодействие различных почв с омывающими их растворами. В 1912 г. М. Потресов [4] описал цеолитный способ исправления жестких вод, основанный на ионном обмене между цеолитом й водой. В 1916 г. академик А. К. Ферсман [5] опубликовал подробное исследование цеолитов России. Вигнер [6] рассмотрел подробно явление ионного обмена в минералах — цеолитах, иначе называемых нермутитами и представляющих водные алюмосиликаты кальция и натрия. Академик Н.С. Курпаков 17] исследовал состав пермутитов методом физико-химического анализа. [c.164]


Смотреть страницы где упоминается термин Галогены анализ смеси: [c.349]    [c.63]    [c.580]    [c.399]    [c.580]    [c.78]    [c.105]    [c.358]    [c.320]    [c.23]    [c.23]    [c.252]    [c.305]   
Практическое руководство по неорганическому анализу (1966) -- [ c.817 ]




ПОИСК







© 2025 chem21.info Реклама на сайте