Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты гидрирование

    Гидроаммонолиз карбоновых кислот основан на двух реакциях— образования амидов кислот при действии аммиака и гидрирования амидов в амины  [c.510]

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    Пирролидин. При восстановлении молекула пиррола присоединяет два атома водорода (в положение 2,5) и образует дигидропиррол—пирролин. Дальнейшее гидрирование дает тетрагидропиррол—пирролидин. Пирролидин по своим свойствам подобен жирным вторичным аминам. Это—жидкость (темп. кип. 88,5 С) с характерным аммиачным запахом, сильно дымит на воздухе. Из производных пирролидина отметим а-пирролидин-карбоновую кислоту—пролит [c.587]

    Вторая группа процессов гидрирования соответствует восстановлению органических соединений (хотя к восстановлению относят и превращение карбонильных соединений в спирты, не сопровождающееся отщеплением воды). К ним принадлежит гидрирование карбоновых кислот в спирты, спиртов — в углеводороды, амидов кислот и нитросоедииений — в амины и т. д.  [c.458]

    Гидрирование жиров. Жиры животного и растительного происхождения состоят в основном из триглицеридов предельных и непредельных карбоновых кислот. В некоторых жирах встречаются эфиры высокомолекулярных жирных кислот и высокомолекулярных спиртов алифатического ряда. В качестве примесей могут быть соединения фосфора, азота и серы. [c.43]

    При гидрировании самих карбоновых кислот образующиеся спирты также дают с ними сложные эфиры [c.505]

    Карбоновые кислоты легко восстанавливаются до первичных спиртов под действием алюмогидрида лития [457]. Реакция не останавливается на стадии образования альдегида (см., однако, т. 2, реакцию 10-85). Условия этого восстановления очень мягкие — реакция хорошо идет при комнатной температуре. Используют и другие гидриды, но не боргидрид натрия (см. табл. 19.5) [458]. Каталитическое гидрирование в этом случае также обычно оказывается неэффективным. Для восстановления карбоксильных групп особенно удачно использование борана (табл. 19.4), который позволяет селективно проводить реакцию в присутствии многих других функциональных групп (хотя реакция с двойными связями идет примерно с той же скоростью) [459]. Гидрид алюминия восстанавливает группы СООН, не затрагивая связей углерод — галоген в той же молекуле. [c.316]

    Гидрирование фталевых кислот и их эфиров. Гидрирование трех изомерных фталевых кислот в циклические спирты осуществляется с большим трудом. Ароматическое кольцо гидрируется значительно хуже, чем в бензоле или феноле. При прямом гидрировании фталевых кислот существенное развитие имеют побочные реакции. Так, при использовании металлических катализаторов на основе меди, хрома, никеля, кобальта и платины происходит не только насыщение кольца, но и декарбоксилирование. Полученный продукт содержит циклогексан и моно-карбоновую кислоту. [c.49]


    Нафтеновые и карбоновые кислоты могут вступать в реакции декарбоксилирования или гидрирования, при котором карбоксильная группа превращается в метильпую. [c.12]

    Гидрогенизация ненасыщенных углеводородов. 1,4.-Присоедине-ние. Гидрирование ацетиленов. Гидрирование ароматических углеводородов. Восстановление карбонильных соединений. Восстановление карбоновых кислот и их производных. Восстановление ароматических ьигросоединений. Бензидиновая перегруппировка. Восстановление алифатических нитросоединений. Сопряженное окисление — восстановление. Реакция Тищенко. Восстанавливающие агенты натрий, водород, цинк, амальгамы металлов, алкоголяты алюминия, алюминнйгидриды, иодистоводородная кислота. [c.100]

    В процессах гидрирования, сопровождающихся выделением воды, равновесие обычно смещено вправо в большей мере, чем в только что рассмотренных случаях. Так, гидрирование спиртов в углеводороды и нитросоединений в амины практически необратимо при всех допустимых температурах. Исключением является превращение карбоновых кислот в спирты [c.462]

    Восстановление и каталитическое гидрирование. Восстанавливая карбоновые кислоты, можно получить альдегиды и первичные спирты, например  [c.400]

    В ряде случаев можно выполнять колонны гидрирования из обычной стали. Если процесс проводится при высоком давлении, способствующем водородной коррозии, или с агрессивными веществами (карбоновые кислоты и др.), требуются специальные стали или облицовка стального корпуса легированной сталью и другими коррозионностойкими металлами. [c.523]

    Насыщенные нитрилы применяют в промышленности главным образом для производства аминов (о гидрировании нитрилов см. на стр. 387) или карбоновых кислот (гидролизом нитрилов). [c.384]

    Гидрирование фенилзамещенных жирно-ароматических карбоновых кислот с различной длиной и строением цепи протекает не с одинаковой скоростью. Отмечено, что кислоты с С Н -группой в (0-положении гидрируются примерно с одинаковой скоростью независимо от длины цепи. Это объясняется тем, что молекулы адсорбируются на катализаторе своими СеН -группами, а боковые цепи с СООН-группой ориентируются над поверхностью катализатора. [c.376]

    Гидрирование ароматических кислородсодержащих соединений (альдегидов, кетонов, спиртов, карбоновых кислот и т. д.) может протекать в двух основных направлениях — превращение ароматического кольца в нафтеновое и восстаноз-ление кислородной группы. По сравнению с гидрированием алифатических соединений имеется ряд особенностей. [c.44]

    Избирательность была установлена и при гидрировании глицеридов непредельных карбоновых кислот или самих кислот. [c.391]

    В результате гидрирования образуется жир, содержащий радикалы только одной предельной карбоновой кислоты  [c.268]

    Препаративным путем предельные углеводороды могут быть получены восстановлением галоидных алкилов, декарбоксилиро-ванием карбоновых кислот, гидрированием соответствующих непредельных углеводородов и другими способами. Наиболее удо -ным методом препаративного получения газообразных предельных углеводородов, за исключением метана, является метод каталитического гидрирования соотиетствугоишх непредельных углевод -родов. [c.88]

    Многие процессы гидрирования протекают через ряд промежуточных стадий. Так, карбоновые кислоты, альдегиды и кетоны восстанавливаются иоследовательно в спирты и углеводороды [c.469]

    Сг ирты, альдегиды, кетоны, карбоновые кислоты могут содержать ненасыщенные углерод-углеродные связи или ароматические систелы, способные к гидрированию. В одних случаях необходимо селективно гидрировать только их, а в других, наоборот, требуется восстановить лишь кислородсодержащие группы. В связи с этий важно выявить условия, способствующие каждому из упомянутых процессов. [c.501]

    Оформление реакционного узла для жидкофазного гидрирования сильно зависит от экзотермичности реакции и способа отвода тепла. Только в редких случаях тепловыделение настолько мало, что реакцию можно осуществить без охлаждения (гидрирование карбоновых кислот и их эфиров). В случае гидрирования летучих веществ (превращение бензола в циклогексан) иногда отводят тепло за счет испарения компонентов смеси, которые конденсируют и возвращают в реактор. Наиболее часто для процессов с дисиерги-ровгнным и суспендированным катализатором осуществляют принудительное охлаждение при помощи внутренних или выносных холодильников, когда при подходящей температуре используют тепло реакции для получения пара. Теплоотвод затруднен для процессов со стационарным катализатором тогда чаще всего ведут ступенчатое охлаждение смеси. [c.517]

    Легче протекает гидрирование эфиров карбоновых кислот, например этилакрилат гидрируется над N1 при 180°. Примерно так же гидрируются эфиры высших непредельных жирных и жирно-ароматических (коричная) кислот. С N1 Ренея эфиры кислот гидрируются хорошо при 80°, с N1 на кизельгуре—при 125—160°. С. А. Фокин над Р1 впервые прогидрировал олеиновую кислоту в стеариновую, а затем непредельные двухосновные кислоты—мезаконовую, ита-коновую, цитраконовую, малеиновую, и фумаровую— в соответствующие предельные кислоты [41]. [c.356]

    Для идентификации сложных смесей, нестабильных веществ, практически нелетучих высокомолекулярных соединений часто используют аналитическую реакционную газовую хроматографию — вариант, в котором хроматографический и химический анализ сочетаются в единой хроматографической схеме. Задача метода состоит в том, чтобы в результате химических реакций получить новую смесь, кор/поненты которой разделяются или идентифицируются лучще, чем компоненты исходной смеси. Широкое применение при этом находит метод вычитания, при котором проводят два хроматограсЬических анализа — исходной смеси до и после поглощения определенной группы компонентов. Таким способом можно, например, устанавливать наличие во фракциях непредельных углеводорсдов, селективно поглон1,ая их в реакторе с силикагелем, обработанным серной кислотой. Прп реакционной газовой хроматографии используются также реакции гидрирования и дегидрирования, этерификации (для анализа карбоновых кислот в виде эфиров), лиролиза высокомолекулярных соединений. [c.86]


    Нафтеновые и карбоновые кислоты могут вступать в реакции декарбоксилирования или гидрирования, при котором карбоксильная группа превращается в метильную. Кислород, содержащийся в конденсированных ароматических структурах, обычно гидрируется с образованием воды, а оставшийся радикал вступает в реакции, рассмотренные выше. При одинаковом строении устойчивость соединений относительно гидрирования возрастает в ряду серо-органические <кислородорганические< азоторганические. [c.222]

    Катализаторы для гидрирования можно распределить на две группы 1) металлы и 2) окислы. К первой группе относятся в первую очередь мелкодиспергированные металлы УП1 группы периодической системы—Ni, Со, Pt, Pd и другие элементы платиновой группы, а также Си. Из катализаторов для гидрирования наиболее часто применяют Ni, который иногда более активен, чем Pt или Pd (Ni Ренея). Для получения катализаторов пользуются методами, описанными выше (стр. f,0) обжигом нитратов или солей органических карбоновых кислот, осаждением щелочами из растворов солей, обработкой сплавов, получением в коллоидном состоянии. [c.339]

    Непредельные карбоновые кислоты, так же как углеводороды и другие соединения, гидрируются с различной скоростью и легкостью в зависимости от строения, числа заместителей, условий гидрирования и т. п. Как и в случае олефинов, скорость гидрирова- [c.356]

    При обработке соединений, содержащих двойные связи, озоном (обычно при низких температурах) получаются вещества, называемые озонидами (11), которые можно выделить. Многие из них взрывоопасны, поэтому их чаще разлагают действием цинка в уксусной кислоте или путем каталитического гидрирования, что приводит к 2 молям альдегида или 2 молям кетона или к 1 молю кетона и 1 молю альдегида в зависимости от природы заместителей у двойной связи в олефине [148]. Разложение озонидов И можно осуществить также с помощью многих других восстановителей, среди которых триметилфосфит [149], тиомочевина [150] и диметилсульфид [151]. Однако озониды можно также либо окислять действием кислорода, перкислот или Н2О2, в результате чего получаются кетоны и (или) карбоновые кислоты, либо восстанавливать действием алюмогидрида лития, боргидрида натрия, ВНз или путем каталитического гидрирования избытком Нг, что дает 2 моля спирта [152]. Озониды можно также обрабатывать либо аммиаком и водородом в присутствии катализатора, что приводит к соответствующим аминам [153], либо спиртом и безводным НС1, в результате чего получаются сложные эфиры карбоновых кислот [154. Следовательно, озонолиз — синтетически важная реакция. В прошлом эта реакция была основой ценного метода установления положения двойной связи в неизвестных соединениях, хотя с распространением инструментальных методов установления структуры этот метод применяется все реже. [c.280]

    Восстановление карбоновых кислот протекает с большим трудом. Обычный восстановитель (кислота + металл) в этих условиях неэффективен. Каталитическое гидрирование кислот при высоком давлении (100 атм) в присутствии хромита меди (СиСгОг) как катализатора приводит к получению спиртов. Обычные металлические катализаторы (никель, палладий, платина)—инертны. Алюмогидрид лития гладко превращает карбоновые кислоты в соответствующие спирты  [c.147]

    Этиловый эфир нндол-2-карбоновой кислоты получается нз о-нитротолуола, диэтилового эфира щавелевой кислоты в этаноле в присутствии этилата калия с последующим гидрированием нитрогруппы в полученном продукте в присутствии Pt-катализатора в уксусной кислоте. Объясните механизм реакции циклизации. [c.283]


Смотреть страницы где упоминается термин Карбоновые кислоты гидрирование: [c.54]    [c.471]    [c.496]    [c.505]    [c.520]    [c.246]    [c.188]    [c.107]    [c.111]    [c.1069]    [c.45]    [c.46]    [c.111]    [c.318]    [c.583]   
Методы эксперимента в органической химии (1968) -- [ c.85 ]

Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.483 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.547 , c.559 , c.607 , c.612 ]

Органическая химия Издание 3 (1980) -- [ c.230 ]

Основы технологии нефтехимического синтеза Издание 2 (1982) -- [ c.156 ]




ПОИСК







© 2025 chem21.info Реклама на сайте