Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алка-процесс

    Схема процесса показана на рис. 32, а. Пропан и хлор через расходомеры 32 поступают в нагреватели 2и 3, помещенные в обогреваемую баню, в которой в зависимости от требуемой температуры нагрева в качестве теплоносителя применена вода или расплавленные соли. Хлор и пропан поступают в трубопровод в жидком состоянии, поэтому количество их может измеряться жидкостными расходомерами. Если необходимо, пропан можно разбавлять соответствующими разбавителями, например азотом или углекислотой, для отвода части выделяющегося тепла, чтобы предотвратить чрезмерно бурное протекание реакции. При хлорировании хлористого пропана в качестве исходного материала азот можно предварительно нагревать, так как в этом случае он играет роль теплоносителя, подводящего тепло, необходимое для испарения и нагрева хлористого алкила. [c.161]


    С целью выяснения роли алкенов и водорода в процессе Сб-дегидроциклизации и изомеризации алканов исследованы [125] превращения 3-метилпентана, а также З-метилпентена-1, цис- и транс- изомеров 3-метилпен-тена-2 на платиновой черни при температуре 300—390 °С Е1 токе Нг и Не при ( азличном содержании Нг в газе-носителе. Выявлено четкое влияние концентрации Нг в газе-носителе на превращения (Сз-циклизация, скелетная изомеризация, образование метилциклопентана и бензола) 3-метилпентана и изомерных алкенов. Полагают [125], что скелетная изомеризация должна проходить через промежуточный поверхностный комплекс, общий для 3-метилпентана и 3-метилпентенов. Этому комплексу соответствует полугидрированное поверхностное состояние углеводорода, адсорбированного на двух центрах. При малом содержании Нг возникает сильное взаимодействие между углеводородом и металлом с образованием кратных связей углерод—платина, что приводит к образованию З-метилпентена-1 из 3-метилпентана и. к частичному покрытию поверхности катализатора коксом. При больших количествах Нг преобладает слабое взаимодействие, увеличивается время жизни промежуточного комплекса и протекают характерные реакции дегидрирование алкана с образованием 3-метилпентена, Сз-де- [c.229]

    Образование комплексных соединений карбамида является экзотермическим процессом, тепловой эффект которого в расчете на один атом углерода (п) в молекуле н-алкана составляет 6,7 кДж. [c.271]

    Составы аминокислот, полученных в результате жизнедеятельности дрожжевых грибов, развивающихся на нормальных алканах нефтяного происхождения и на сахарах [22], а также на другом сырье, содержащем нормальные алканы, оказались близкими, а экономика прессов сопоставима [22]. В настоящее время основным сырьем служат нефтяные нормальные алканы. Процессы ферментации могут различаться по используемой культуре микроорганизмов, аппаратурному оформлению, режиму, хотя принципиально они близки. Так, во Франции работает промышленная установка производительностью 50 т биомассы в сутки с использованием в качестве сырья тяжелого газойля, содержащего 10 % алканов [23, 24]. Английская фирма Бритиш Петролеум использовала две схемы производства кормовых протеинов из очищенных нормальных алканов и из алканов нефтяного газойля [26]. [c.326]

    Согласно схеме механизма (подробно рассматривается в разделе Элементоорганические соединения ), реакция протекает в координационной сфере родия так, что оба атома водорода могут присоединяться к двойной связи только с одной стороны молекулы алкена. Процесс протекает, таким образом, как син-присоединение. [c.86]


    Установлено, что уменьшению количественного содержания пятичленных нафтенов в бензиновых фракциях по горизонтам соответствует увеличение количественного содержания шестичленных нафтенов. Изучение поведения алкил-циклопентановых углеводородов в присутствии глины дает основание предположить, что в природе имеет место процесс изомеризации гомологов циклопентана в циклогексановые углеводороды. [c.145]

    Для удаления газообразных и твердых фторидов, образующихся в печах при выплавке алюминия, был разработан метод, состоящий в пропускании газов через псевдоожиженный слой глинозема, который затем направляют в плавильную печь, возвращая в процесс (Алка-процесс А 398). Абсорбцию ведут при температуре 65—160 °С, толщина слоя абсорбента 50—300 мм эффективность улавливания газообразных фторидов составляет [c.162]

    Из схемы (3) видно, что первая стадия реакции — протонирование молекулы алкана, процесс, типичный для кислотного катализа,— завершается во второй стадии восстановлением присоединившегося протона за счет окисления органической молекулы до карбониевого иона. Таким образом, в области очень высокой кислотности среды граница между кислотно-основными и окислительно-восстановительными процессами стирается. Активность протонов и их электрофильность настолько велика, что протоны приобретают свойства акцепторов гидридных ионов, т. е. гетеролитичес-ких окислителей. [c.9]

    Прекращение реакции может наступить в результате обрыва цепи, вызываемого прежде всего действием кислорода, который вступает в соединение с алкил-радикалом и с атомом хлора. Так как в технических газах всегда содержится большее или меньшее количество кислорода, обрыв цепи в промышленных условиях наступает относительно быстро. В то время как при использовании химически чистых газов квантовый выход достигает 30 000—40 000, в технических процессах эта величина не превышает 2000. Под квантовым выходом понимается число реакций, вызываемых одним световым квантом до обрыва цепи. [c.113]

    Исследования Хиншельвуда с сотрудниками говорят в пользу того, что скорость окисления парафиновых углеводородов сильно зависит от длины цепи. Они окисляли в газовой фазе при одинаковых условиях различные алканы и получали результаты, приведенные в табл. 149. Можно возразить, что в этих опытах условия протекания процесса отличались от тех, которые используются в технике. Тем не менее экспериментальные данные могут по меньшей мере укрепить нас в мнении, что существуют известные различия, зависящие от молекулярного веса углеводорода. [c.585]

    Относительно условий и состава продуктов процесса бутамер, условий подготовки сырья для него опубликованных данных практически нет. Сырье процесса бутамер, в котором используется гигроскопичный, хлорированный на фабрике фирмы UOP катализатор, должно очищаться от серы и воды [98, 112]. Сочетание бутамера с фтороводородным алки-лированием позволяет заменить гидроочистку бутана очисткой в процессе мерокс и добавочной очисткой фтороводородом [111]. [c.98]

    Бензин гидрогенизации имеет насыщенный характер, так как при гидрировании водород насыщает почти все двойные связи и превращает все алкены в алканы. Процесс деструктивной гидрогенизации, иначе процесс крекинга в присутствии водорода, замечателен тем, что коксообразование шрактически отсутствует. Объясняется это следующим коксообразование при обычном термическом крекинге происходит в результате обеднения жидких продуктов крекинга водородом и конденсации высокомолекулярных ароматических углеводородов. [c.203]

    Алканы расщепляются с образованием алкана и алкена. Процессу расщепления предшествует процесс изомеризации. Образующийся алкен может гидрироваться с образованием алкана. Алканы и алкены прп соответствующих услосинх и катализаторе могут замкнуться с образованием цкклана, который дегидрируется, образуя ароматические углеводороды. [c.46]

    Этот механизм подтверждается также тем, что при замене фенильной группы на водород или алкил процесс останавливается на промежуточной стадии см., например, схемы [c.185]

    До сего времени единственным промышленным процессом получения спиртов путем хлорирования парафиновых углеводородов с последующим омылением хлористого алкила являлось хлорирование технического пентана с последуюигим превращением хлористых амилов в амиловые спирты (пентазолы), которые использовались или непосредственно, или в виде их ацетатов (пентацетаты) и являлись важными вспомогательными материа.лами и растворителями для лакокрасочной промышленности. [c.177]

    Парафиновые углеводороды взаимодействуют с пятихлористой сурьмой при высокой температуре протекает хлорирование с образованием треххлористой сурьмы и хлористого алкила. Треххлористую сурьму можно в отдельной ступени процесса снова хлорировать до пятихлористой. Процесс можно рассматривать как особый случай каталитического хлорирования с применением пятихлористой сурьмы в качестве катализатора при этом потеря хлора пятихлористой сурьмой сразу восполняется за счет хлора, вводимого в реакционную смесь [80]. [c.183]


    Водород под давлением практически не оказывает влияние на процесс крекинга гептана. С чистым хлористым алюминием и в отсутствие хлористого водорода гептан подвергается автодеструктивному алкили-рованию вне зависимости от того, проводят процесс под давлением водорода или азота. В присутствии хлористого водорода и под давлением водорода протекает деструктивное гидрирование с предпочтительным образованием низкомолекулярных углеводородов. [c.521]

    При термическом крекинг-процессе, как правило, образуются парафиновые и ненасыщенные углеводороды олефинового (алкены) и диолефинового (алкадеиды) рядов, что является одним из наиболее характерных отличий термического крекинг-процесса от других видов переработки нефти. [c.8]

    В данной работе ставилась. чадача выделить н-алканы с помощью синтетического цеолита кальциево11 формы типа А нз низкооктанового туркменского беизина и проследить, как повлияет этот процесс на повышение антидетонациоиных свойств бензина. [c.190]

    Считается, что на НПЗ средней мощности (5 — 7 млн. т/год) кахдый процесс должен быть представлен одной технологической установкой. Однако при такой технологической структуре НПЗ связи между процессами становятся весьма жесткими, резко повы — ша отся требования к надежности оборудования, системе контроля и автоматизации, сроку службы катализаторов. В современной прмктике проектирования и строительства НПЗ большой мощности (10—15 млн. т/год) предпочтение отдается двухпоточной схеме переработки нефти, когда каждый процесс представлен двумя одноименными технологическими установками. При этом процесс, длз которого ресурсы сырья ограничены приданной мощности НПЗ, мо кет быть представлен одной технологической установкой (алки — ли]ювание, коксование, висбрекинг, производство серы и др.). [c.253]

    Целевым назначением процесса, разработанного в Германии (бывшей ГДР), является получение из дистиллятных, преимущественно керосиновых и дизельных фракций жидких нормальных парафинов высокой степени чистоты и низкозастывающих денор— мализатов — компонентов зимних и арктических сортов реактивных и дизельных топлив. Получаемые в процессе "Парекс" парафины используются как сырье для производства белково-витаминных концентратов, моющих средств, поверхностно-активных веществ и др/гих продуктов нефтехимического синтеза. Сырьем процесса является прямогонный керосиновый дистиллят широкого или узкого фракционного состава (в зависимости от требований, предъявляемых к продуктам), который предварительно подвергается гидроочистке. В качестве адсорбента используется цеолит типа цеосорб 5АМ (типа СаА). Используемый адсорбент — цеолит, обладающий молекулярно-ситовым эффектом, избирательно адсорбирует н-алканы из смесей их с углеводородами изо- или циклического строения. Характерной особенностью процесса "Па — реке" является проведение адсорбции в среде циркулирующего во, ородсодержащего газа, являющегося газом-носителем сырья. Применение циркулирующего газа-носителя препятствует быс — [c.269]

    Сырье. С — алкилированию в нефтепереработке чаще всего подьергают изобутан и значительно реже изопентан (последний является ценным компонентом автобензина (его ОЧИМ = 93). Существенное влияние на показатели процесса оказывает состав алке нов. Этилен практически не алкилирует изобутан, но сульфа — тир 1ется и полимеризуется. Пропилен легко вступает в реакцию с изо()утаном, но октановое число меньше, чем при алкилир(5вании бутиленами (табл.8.9). Высшие алкены (С и выше) более склонны к реакциям деструктивного алкилирования с образованием низко — молекулярных и низкооктановых продуктов. [c.141]

    Диены, содержащиеся в сырье, образуют сложные продукты взаимодействия с серной кислотой и остаются в кислотной фазе, рс збавляя кислоту, что увеличивает его расход. Поэтому диеновые углеводороды не должны содержаться в сырье. К сырью С — а/килирования предъявляются также повышенные требования по сс держанию влаги и сернистых соединений. Если сырье каталитического крекинга не подвергалось предварительной гидроочистке, тогда бутан — бутиленовую фракцию крекинга — сырье С — алкили — рования обычно очищают щелочью или в процессах типа Мерокс от сернистых соединений. [c.142]

    Воды в реакционной среде быть не должно, так как М,Ы -карбо-нилдиимидазол гидролизуется даже во влажном воздухе (с образованием двуокиси углерода и имидазола) . Реакция поликонденсации проводится в инертных растворителях (тетрагидрофуран, ме-тилеихлорид) . Образующийся имидазол по окончании реакции удаляют из раствора поликарбоната экстракцией соляной кислотой и водой или другим способом, так как его присутствие даже в небольших количествах приводит к потемнению и разложению поликарбоната в процессе переработки. Реакции ди-(4-оксифенил)-алка-нов с Ы,М -карбонилдиимидазолом в расплаве приводят к получению окрашенных низкомолекулярных поликарбонатов вследствие разложения бис-фенолов и поликарбонатов имидазолом > мв-мо В настоящее время этот способ получения поликарбонатов промышленного применения не имеет. [c.46]

    Основные отличия гидрокрекинга от каталитического крекинга заключаются в том, что общая конверсия парафинов выше в первом процессе, чем во втором. Это обусловлено легкостью обра — зс вания алкенов на гидро — дегидрирующих центрах катализаторов ГР дрокрекинга. В результате наиболее медленная и энергоемкая стадия цепного механизма — инициирование цепи — при гидрокрекинге протекает быстрее, чем при каталитическом крекинге без вс дорода. Катализаторы гидрокрекинга практически не закоксо — В1 шаются, так как алкены подвергаются быстрому гидрированию и н< успевают вступать в дальнейшие превращения с образованием продуктов полимеризации и уплотнения. [c.226]

    Поскольку энергии диссоциации связей С—Вг как в алкил-, так и в арил-бромидах порядка 50—70 ккал, а /)(Н — 0Н) = 118 ккал, свободно-радикальный цепной процесс в таких системах при 25° невозможен. В действительности в большинстве случаев энергии связей настолько велики, что исключают возможность протекания цепных свободно-радикальных реакций между органическими соединениями при температурах ниже 100°. (Исключение составляют такие соединения, как перекиси, азосоединепия и системы, содержащие окислительно-восстановительные реагенты, такие, как Fe " , Со и т. д.) [c.471]

    А.Н. Гусева и Е.В. Ск>болев разработали классификацию, основанную на представлениях о нефти как природном углеводородном растворе, в котором содержится наибольшее количество хемофоссилий (унаследованных структур) и меньше всего компонентов, изменяющихся под влиянием условий среды существования нефти в залежи, условий отбора пробы, транспортировки и хранения. Однако авторы почему-то назвали классификацию геохимической, хотя в основе ее лежат генетические признаки — хемофоссилии. В этой классификации нефти подразделялись по растворителю на классы — алкановый, циклано-алкановый, алкано-циклановый и циклановый, т. е. по химическому признаку, а классы — на "генетические" типы нефти, обогащенные парафином, затронутые вторичными процессами (осернение), обогащенные легкими фракциями. Однако это в большей мере признаки вторичных изменений нефтей, а не генетических различий. Кроме того, авторы классификации выделяли нефти разной степени катагенеза. Таким образом, А.Н. Гусева и Е.В. Соболев предложили много разных показателей, но их трудно использовать для четкой классификации нефтей. Они ценны главным образом для раскрытия механизма преобразования нефти при тех или иных процессах. Интересны предложенные этими авторами коэффициенты, отображающие соотношения содержания метановых УВ и твердых парафинов с долей углерода в ароматических структурах, которые увеличиваются с возрастанием степени катагенеза. [c.8]

    В процессе диагенетических преобразований в осадках накапливаются в основном липидные компоненты, удаляются белковые, карбогидрат-ные (углеводы) соединения и т. д. Изучение их и. с. у. показало, что при диагенезе в ОВ разного типа происходит однонаправленное изменение и. с. у. в сторону его облегчения, но в разных масштабах [29]. Судя по имеющимся в литературе данным [4], ОВ пород наследует так называемые биологические маркеры (индивидуальные химические соединения), углеродный скелет которых обладает высокой химической устойчивостью и специфичностью строения. В этом ряду стоят и-алканы и монометил-замещенные длинноцепочечные изоалканы, изопреноиды, циклические дитерпаны, тритерпаны, стераны, петропорфирины, а также высшие УВ, представленные стабильными ароматическими структурами. [c.29]

    В соответствии с суждаемой ассоциативной схемой, процесс Сб-дегидровдклизации алканов не зависит от концентрации активного металла в металлическом катализаторе на носителе. Поэтому эта схема может служить основой для истолкования с единой точки зрения экспериментальных результатов, полученных как при высоком, так и при низком содержании металла в катализаторе, хотя каждый из этих случаев имеет свои особенности. Так, в присутствии (20% Pt)/ молекула углеводорода плоско адсорбирована пятью углеродными атомами в междоузлиях решетки платины [63, 64], в случае же (0,6% Р1)/А120з адсорбция алкана может проходить другим способом, в частности по дублетной схеме. Предлагаемый механизм с участием адсорбированного на катализаторе водорода в непосредственном акте Сб-дегидроциклизации хорошо согласуется с данными, приведенными в работах [84, 108]. [c.231]

    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]

    Уравнение (35) выражает целую реакцию, а но отдельную стадию цепного процесса. Действительно, в зтом случае в продукте обнаруживается значительное количество свободного брома в противоположность процессу окисления пропана, когда во )можно образование конечного продукта без восстановления перекисных соединений. Однако свободного галогена подучается все же гораздо меньше, чем требуется согласно стехиометрическому уравнению (35) осиовпая часть его, по-видимому, вступает в реакцию, образуя бромистый алкил, который, в свою очередь, также превращается в кислоту  [c.277]

    В настоящее время процессы изомеризации пентанов и гексанов получили особенное значение в связи с общемировой тенденцией отказа от применения тетраэтилсвинца при приготовлении автомобильных бензинов Изомеризацией н-бутана получают изобутан, применяемый в процессе алкилирования. Необходимость в изобутане возрастает в связи с применением зысокоакгивных цеолитсодержащих катализаторов в процессе каталитического крекинга и соответственным уменьшение.м количества получаемого изобутилена в комбинированных схемах получения алки-латов, изопрена и метил-грет-бутилового эфира процесс изомеризации н-бутана используется в качестве головного, с последующим дегидрированием изобутака в изобутилен. Селективное вовлечение во вторичные процессы изобутилена исключает дорогостоящую и энергоемкую стадию ректификации., [c.3]

    С друго11 стороны, в процессе каталитического риформинга, как убедились Хэнсел и Стерба, алканы подвергаются гидрокрекингу и изомеризации и соответственно снижению пределов кипения. Циклопентаны изомеризуются в циклогексапы и совместно с природными циклогексанами подвергаются дегидрированию и превращаются в ароматику, при этом пределы кипения несколько повышаются но сравнению с пределами кипения для сырья. [c.56]

    При термической полимеризации требуемая температура процесса значительно выше (540—650° С), чем при каталитической (150—230° С па твердой фосфорной кислоте). Продукт содержит алканы, цикланы и ароматику (см. табл. 1-27). [c.58]


Смотреть страницы где упоминается термин Алка-процесс: [c.250]    [c.20]    [c.405]    [c.535]    [c.207]    [c.259]    [c.136]    [c.226]    [c.255]    [c.88]    [c.225]    [c.430]   
Химия окружающей среды (1982) -- [ c.162 , c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Алка-процесс извлечение фторидов



© 2024 chem21.info Реклама на сайте