Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы по рентгеновским спектрам

    В 1912 г. Генри Мозли (1887-1915) обнаружил, что частота рентгеновского излучения, испускаемого элементами при бомбардировке электронным пучком, лучше коррелирует с их порядковыми номерами, чем с атомными массами. Закономерная взаимосвязь между порядковым номером элемента и частотой (или энергией) рентгеновских лучей, испускаемых элементом, определяется внутриатомным строением элементов. Как мы узнаем из гл. 8, электроны внутри атома располагаются по энергетическим уровням. Когда элемент бомбардируется мощным пучком электронов, атомные электроны, находящиеся на самых глубоких энергетических уровнях, или, иначе, электроны из самых внутренних оболочек (ближайших к ядру), могут вырываться из атомов. Когда внешние электроны переходят со своих оболочек на образовавшиеся вакансии, атомы излучают энергию в форме рентгеновских лучей. Рентгеновский спектр элемента (набор частот испускаемого рентгеновского излучения) содержит в себе информацию об электронных энергетических уровнях его атомов. В настоящий момент для нас важно то, что эта энергия зависит от заряда ядра атома. Чем больше заряд атомного ядра, тем прочнее связаны с ним самые внутренние электроны атома. Тем большая энергия требуется для выбивания из атомов этих электронов и, следовательно, тем большая энергия испускается, когда внешний электрон переходит на вакансию во внутренней электронной оболочке. Мозли установил, что частота испускаемого при этом рентгеновского излучения (ее обозначают греческой буквой ню , V) связана с порядковым номером элемента Z соотношением [c.311]


    Характеристический рентгеновский спектр образуется, когда энергия электронов превосходит порог возбуждения, характерный для атомов анодного вещества (рис. 52). Длина волны однородного характеристического излучения зависит от вещества анода и не зависит от приложенного напряжения. Характеристический рентгеновский спектр состоит из нескольких групп линий (серий), значительно отличающихся друг от друга по длине волны. Для более тяжелых элементов таких серий четыре К. I, М, N. Каждая  [c.109]

    Характеристический рентгеновский спектр состоит из нескольких групп линий — серий, значительно отличающихся друг от друга по длине волны. Для более тяжелых элементов таких серий было найдено четыре К, /И, N (рис. 57). [c.107]

    Сплошной спектр (называемый также белым излучением ) возбуждается всегда, когда возникают рентгеновские лучи. Он вызывается потерей энергии при торможении электронов атомами любого элемента. Этот спектр начинается резко у коротковолновой границы и простирается теоретически в бесконечность в направлении ДЛИННЫХ волн. [c.351]

    Закон Мозли позволяет измерить величину порядкового номера г элемента, что дало возможность исправить некоторые места периодической системы и точно установить пропуски в ней, отвечающие не открытым еще элементам. Рентгеновские спектры последних заранее известны, что позволило систематическим изучением разных минералов открыть недавно 3 из 6 элементов, оставшихся неоткрытыми. [c.108]

    Переходы электронов, принадлежащих к внутренним слоям, дают рентгеновское излучение, длинна волн которого значительно меньше, чем длина волн видимого света. Это обусловлено тем, что внутренние электроны более прочно связаны с ядром, поэтому их переходы сопряжены с большими энергетическими изменениями, что, согласно уравнению (1.36), приводит к излучению высокой частоты и, следовательно, малой длины волны. Рентгеновские спектры состоят из небольшого числа линий их частоты закономерно изменяются с возрастанием заряда ядра при -переходе от одного элемента к другому (см. разд. 1.5). [c.30]

    Следует отметить, что длина волны рентгеновского спектра почти не зависит от условий его получения и химической структуры соединений, в которых находится данный элемент. Рентгеновские спектры ряда элементов значительно проще и однороднее, чем обычные оптические спектры. Простота рентгеновского спектра, наряду с его постоянством, дает возможность использовать этот спектр в качественном анализе. [c.206]


    Анализ рентгеновского спектра (рентгеноспектральный анализ) используется для качественного и количественного (по интенсивности линий в спектре) определения элементов в материалах сложно о состава. [c.142]

    В энергетическом спектре фотоэлектронов, представляющем кривую зависимости числа фотоэлектронов от кинетической энергии (или энергии связи электронов в атомах), наблюдаются четкие узкие полосы, каждая из которых соответствует определенному электронному уровню например, уровням показанным на рис. VI. , соответствует спектр вида, приведенного на рис. VI.2, а. Интенсивность полос пропорциональна содержанию эквивалентных (с учетом окружения, т. е. химического строения) атомов данного элемента. Информация, извлекаемая из фотоэлектронного спектра, прежде всего из положения пиков, сходна с той, которая может быть получена из рентгеновских спектров поглощения (или, соответственно, из УФ спектров). При прохождении через слой образца непрерывного спектра рентгеновского из- [c.136]

    Рентгеновские лучи возникают при соударении быстролетящих электронов с атомами любого элемента и представляют собой электромагнитные волны с частотами, располагающимися между УФ-лучами и 7-лучами радия. Рентгеновский спектр может быть либо сплошным, либо линейчатым. [c.351]

    Характеристический для данного элемента линейчатый спектр испускается, когда энергия бомбардирующих электронов достаточна, чтобы ионизировать атомы посредством удаления электронов из наиболее глубоких внутренних слоев (например. К). На освободившееся в /С-слое место переходит электрон с одного из вышележащих слоев Ь, М, N и т. д. При каждом из таких переходов испускается фотон рентгеновского излучения. Спектр этого излучения состоит из отдельных линий, соответствующих переходам электронов из слоев Ь, М, N и т. д. в К-слоп. Совокупность этих линий образует /С-серию рентгеновского спектра, которую обычно используют в рентгенографии. [c.352]

    Химическая связь в основном осуществляется так называемыми валентными электронами. У 8- и р-элементов валентными являются электроны внешнего слоя, а у -элементов — электроны 5-состояния внешнего слоя и ( -состояния предвнешнего слоя. Как показывают экспериментальные данные (например, рентгеновские спектры молекул), при химическом связывании атомов состояние электронов внутренних слоев практически не изменяется. [c.57]

    Все без исключения элементы имеют в рентгеновском спектре ТСа-линию. У всех элементов, кроме самых легких (водорода и гелия) имеются а-линии. Какие из этого можно сделать выводы (даже не зная, что означает Ка или 1а-линии спектров). [c.27]

    Графически закон Мозли представлен рис. 101. Открытие этой зависимости Мозли (1913) сыграло очень важную роль при выяснении строения атома (в частности, подтвердило его слоистое строение), позволило определять экспериментально атомный номер элемента и подтвердило правильность расположения элементов в периодической системе. Установленная Мозли зависимость позволила рассчитать рентгеновские спектры в то время еще неизвестных, и открытых лишь впоследствии элементов —гафния, рения и др. [c.172]

    Для анализа смеси элементов, близких по химическим свойствам, применяют рентген-спектральный метод. Исследуемое вещество наносят на поверхность антикатода рентгеновской трубки, создают вакуум, облучают антикатод потоком электронов и измеряют положение и интенсивность линий возбужденного рентгеновского спектра. Метод особенно ценен для анализа, например, смеси редкоземельных металлов или циркония и гафния. [c.19]

    РЕНТГЕНОСПЕКТРАЛЬНЫЙ АНАЛИЗ — метод аналитической химии, в котором для определения состава вещества используют рентгеновские спектры химических элементов. Р. а. может быть использован для количественного определения элементов от l Mg до в материалах различного состава. Чаще всего Р. а. применяют в металлургии и геологии. [c.214]

    Относительные интенсивности линий в сериях характеристического рентгеновского спектра определяются соответствующими правилами отбора, т. е. вероятностями квантовых переходов, а Зависимость выходов, флуоресценции (1) и оже-электро-частоты, как уже было сказано J,pJ, вакансии в /(-оболочке (см. равенство VI.5), дают раз- от атомного номера 2 элемента ности энергии квантовых уровней электронов. [c.139]

    Рассмотренные в разделе методы характеризуются прежде всего высокой чувствительностью, специфичностью и большой широтой возможных применений, хотя и предназначены главным образом для исследования поверхности твердых тел и молекул в газовой фазе. В некоторых аспектах их можно сопоставлять с какими-либо другими физическими методами исследования, а в некоторых отношениях они обладают совершенно уникальными возможностями. Например, эмиссионный спектральный анализ может найти себе конкурента в методе РЭС при определении химических элементов. Фотоэлектронные спектры более специфичны, чем абсорбционные рентгеновские спектры и УФ спектры, характеризуясь более узкими линиям ч достаточно высоким разрешением. Многие данные, получаемые из фотоэлектронных спектров, хорошо коррелируют с данными других методов. [c.165]


    Чем больше заряд атомного ядра, тем сильнее будет отталкиваться от него а-частица, тем чаще будут встречаться случаи сильных отклонений а-частиц, проходящих через слой металла, от первоначального направления движения. Поэтому опыты по рассеянию а-частиц дают возможность не только обнаружить существование атомного ядра, но и определить его заряд. Уже из опытов Резерфорда следовало, что заряд ядра (выраженный в единицах заряда электрона) численно равен порядковому номеру элемента в периодической системе. Это было подтверждено Г. Мозли, установившим в 1913 г. простую связь между длинами волн определенных линий рентгеновского спектра элемента и его порядковым номером, и Д. Чедвиком, с большой точностью определившим в 1920 г. заряды атомных ядер ряда элементов по рассеянию а-частиц. [c.39]

    Метод локального рентгеноспектрального анализа заключается в том, что тонко сфокусированный пучок быстрых электронов направляется на поверхность объекта и возбуждает рентгеновский спектр элементов, находящихся в данной точке. Возникшее рентгеновское излучение анализируется с помощью одного или нескольких спектрометров по длинам волн и их интенсивности, и это позволяет производить качественный и количественный анализ материала в месте падения пучка электронов. [c.151]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    Помимо целей химического анализа, применение метода сыграло большую роль в исследовании самых различных свойств вещества. Так, благодаря рентгеновской спектроскопии получены сведения о поведении и свойствах электронов в твердых телах. Именно анализ рентгеновских спектров, обусловленных электронными переходами с глубинных дискретных уровнен атомов на более удаленные орбиты, является наиболее прямым способом для изучения распределения энергетических уровней в валентной и проводящих зонах, дает возможность найти распределение между занятыми и свободными электронными уровнями в твердых телах. При изменении физического или химического состояний вещества наблюдаются небольшие смещения линий в спектрах отдельных элементов, которые позволяют судить о характере и изменении роли электронных орбиталей этих элементов при переходе в химически связанное состояние. Следует отметить, что возможности этого метода для исследования физико-химических свойств твердых тел далеко не исчерпаны и в настоящее время работа в этом направлении продолжается. [c.126]

    Качественный обзорный анализ. Сначала получают полный рентгеновский спектр анализируемого образца в интервале углов скольжения 20 = 10— 140°. Для идентификации отдельных элементов в первую очередь находят наиболее интенсивные линии, соответствующие Ка- или ц-переходам обнаруживаемого элемента (табл. 5.8). Затем систематически отыскивают другие линии этих элементов, которые должны отличаться соответствующими соотношениями интенсивностей (см. стр. 203). При идентификации часто оказываются полезными сравнительные диаграммы спектров чистых элементов. Следует учитывать, что наряду со спектром материала пробы появляется также диффузно рассеянный спектр материала трубки (рис. 5.10, а). Могут появляться дополнительные линии за счет материала рентгеновской трубки, коллиматора или экрана (Ре, Си, Мо, РЬ). Далее, точная идентификация ли- [c.207]

Рис. 1.14. Зависимость / V для линий серий К, и рентгеновского спектра от порядкового номера элемента Рис. 1.14. Зависимость / V для <a href="/info/374789">линий серий</a> К, и <a href="/info/2755">рентгеновского спектра</a> от <a href="/info/7331">порядкового номера</a> элемента
    В 1914 г. английским ученым Г. Мозли был открыт следующий закон корень квадратный из волнового числа определенной линии характеристического рентгеновского спектра элемента есть линейная функция заряда ядра, или, что то же, порядкового номера элемента  [c.22]

    Непериодическим свойством можно считать частоту линий рентгеновского спектра. Эта величина плавно изменяется с увеличением порядкового номера элемента в соответствии с уравнением [c.57]

    В 1913 г. существовали три пары элементов, которые по своим химическим и физическим свойствам не могли быть помещены в ряд в порядке увеличения атомных весов. Это были аргон и калий, кобальт и никель, теллур и иод. С помош,ью рентгеновских спектров было установлено, что хотя они и нарушают общий но-рядок расположения элементов по возрастанию атомных весов, [c.94]

    Мозли нашел эмпирическую формулу, в которой частота V /Са-линии характеристического рентгеновского спектра элемента связана с порядковым номером  [c.94]

    Важнейшей особенностью рентгеновских спектров является монотонное увеличение частот для аналогичных линий испускания или краев поглощения с ростом порядкового номера элемента согласно закону Мозли  [c.229]

Рис. 6.16. Изменение частот в рентгеновских спектрах с ростом порядкового номера элемента Рис. 6.16. <a href="/info/168655">Изменение частот</a> в <a href="/info/2755">рентгеновских спектрах</a> с ростом <a href="/info/7331">порядкового номера</a> элемента
    Типичным примером спектрографического полуколичественного анализа является определение следовых количеств элементов в неорганических и органических пробах при контроле качества различных химических продуктов 118, 33, 39]. Спектрографический метод эффективно используют при выполнении большого числа анализов в геохимической разведке [34]. Спектрографический метод малоэффективен при анализе проб, содержащих элементы, спектры которых имеют очень много линий (Fe =, Mo, W, Со. ..). В случае такой неблагоприятной комбинации элементов целесообразно использовать рентгеновские спектры, отличающиеся небольшим числом линий. [c.195]

    Антикатод делают из простого вещества, спектр которого хотят исследовать, или же на платиновый антикатод наносят какое-либо соединение исследуемого элемента. Возникающее рентгеновское излучение 4 антикатода направляют через кристалл (игра.ющий роль дифракционной решетки) на фотографическую пластинку. После проявления на ней выступают линии спектра. В настоящее время рентгеновские спектры чаще a ero получают, возбуждая вещество жесткими рентгеновскими лучами. [c.142]

    В апреле 1914 г. Мозли опубликовал результаты исследования 39 элементов, от 1зА1 до 7,Ли. (Напомним, что порядковый номер элемента указывается индексом слева внизу от символа элемента.) Часть полученных им данных воспроизводится на рис. 7-2. Мозли писал Спектры элементов представляют собой равноотстоящие друг от друга горизонтальные линии. Выбранная последовательность расположения элементов соответствует возрастанию их атомных весов (масс), за исключением случаев Аг, Со и Те, когда она не согласовывалась с последовательностью изменения их химических свойств. Между элементами Мо и Ки, а также между Nd и 8т и между XV и Оз остаются вакантные места для спектральных линий, но элементы, которым могли бы соответствовать линии в этих местах, неизвестны... Все это эквивалентно тому, как если бы мы приписали последовательным элементам ряд характеризующих их последовательных целых чисел... Тогда, если бы какой-либо элемент не удавалось охарактеризовать такими числами или произошла ошибка в составлении последовательности элементов либо в нумерации мест, оставленных для еще неизвестных элементов, установленная закономерность (прямолинейная зависимость) оказалась бы сразу же нарушенной. Это позволяет на основании одних лишь рентгеновских спектров заключить, не пользуясь никакой теорией строения атома, что указанные выше целые числа действительно могут характеризовать элементы... Недавно Резерфорд показал, что наиболее важной составной частью атома является расположенное в его центре положительно заряженное ядро, а Ван-ден-Броек выдвинул предположение, что заряд этого ядра во всех случаях представляет собой целочисленное кратное от заряда ядра водорода. Есть все основания предполагать, что целое число, определяющее вид рентгеновского спектра [элемента], совпадает с числом единиц электрического заряда в ядре [его атомов], и, следовательно, данные эксперименты самым серьезным образом подтверждают гипотезу Ван-ден-Броека . [c.312]

    К числу наиболее важных моделей следует отнести планетарную модель атома, предложенную Резерфордом (1911). Им было обнаружено, что при прохождении пучка а-частиц сквозь тонкие слои образцов чистых металлов происходит лишь небольшое их рассеяние, только малая доля а-частиц отклоняется на угол рассеяния более 90°. Причем примерно 1 частица из 10 000 отражалась в обратном направлении, Для объяснения результатов опытов Резерфорд предложил планетарную модель строения атома, сходную со строением солнечной системы. В центре атома находится положительно заряженное ядро, размеры которого (10 см) очень малы по сравнению с размерами атома (10 см), а масса ядра почти равна массе атома. Вокруг ядра движутся электроны, число которых в нейтральных атомах равно величине заркда ядра. Вскоре было показано, что положительный заряд, выраженный в единицах элементарного заряда, равен порядковому номеру элемента в периодической системе. Численные значения заряда ядра были найдены Мозли (1913) на основе изучения рентгеновских спектров и Чедвиком (1920) из данных -по рассеянию а-частиц. [c.43]


Смотреть страницы где упоминается термин Элементы по рентгеновским спектрам: [c.142]    [c.61]    [c.312]    [c.35]    [c.37]    [c.38]    [c.172]    [c.152]    [c.50]    [c.57]    [c.22]   
Современная общая химия Том 3 (1975) -- [ c.165 , c.166 ]

Современная общая химия (1975) -- [ c.165 , c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Атомный номер и рентгеновские спектры элементов

Рентгеновские Рентгеновская-спектроскопия. 78. Закон Мозли и теория рентгеновских спектров. 79. Систематика рентгеновских спектров. 80. Применение рентгеноспектроскопии Периодическая система элементов

Рентгеновские спектры поглощения атомов легких элементов в молекулах и в кристаллах

Рентгеновские спектры поглощения атомов переходных элементов в молекулах (на примере соединений никеля)

Спектры рентгеновский

Спектры элементов



© 2025 chem21.info Реклама на сайте