Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скандий отделение от металлов

    Осаждение гидроокиси. Для концентрирования и отделения скандия от щелочных и щелочноземельных металлов осаждают гидроокись  [c.19]

    Получение чистых соединений тория из монацитовых песков и анализ промышленных объектов на содержание в них тория связаны обычно с отделением его от природных спутников р. 3. э., иттрия, урана, железа, кремния и фосфора, а также в ряде случаев — от титана, циркония, гафния, кальция и др. Отделение тория от металлов подгруппы титана и ряда других элементов не вызывает особых затруднений. Напротив, сходство, существующее между соединениями тория и р. з. э., иттрия и скандия, делает это разделение весьма нелегким. [c.94]


    При относительно небольшой плотности тока (0,01 а/смР-) оно достигает весьма значительной величины (1,2 в). Это обстоятельство может быть использовано для разделения металлов. При электролизе подкисленных растворов с применением ртутного катода все металлы, ионы которых разряжаются на ртути при потенциалах еще более отрицательных, чем ионы водорода, останутся в растворе. Не осаждаются в этих условиях щелочные и щелочноземельные металлы, алюминий, металлы подгрупп скандия, титана и ванадия, вольфрам, уран. Таким образом удается отделить эти металлы от железа, хрома, цинка, кадмия и других металлов, которые разряжаются на ртути и образуют с ней амальгаму. Этот метод широко применяется при анализе алюминиевых сплавов для отделения железа. При анализе сталей железо таким же образом отделяется от алюминия, титана, ванадия и некоторых других компонентов сталей. Все эти металлы остаются в сернокислом растворе взятой навески стали, а железо уходит в амальгаму. Такое предварительное групповое разделение весьма облегчает весь ход анализа и может применяться для самых различных сплавов. [c.294]

    Практически во всех методах определения тория необходимо конечное осаждение его в виде оксалата для обеспечения полного удаления циркония и титана, обычно сопровождающих торий п и всех предварительных операциях. Осаждению тория в виде оксалата должны предшествовать операции, изложенные в разделе Методы отделения (стр. 600), для отделения обычных металлов, щелочноземельных металлов, редкоземельных элементов и скандия. Осаждение аммиаком, как описано в гл. Алюминий (стр. 565), с последующим прокаливанием до окиси вполне приемлемо для анализа растворов, свободных от других осаждаемых аммиаком элементов. В этом случае осадок лучше промывать нитратом аммония, чем хлоридом аммония, вследствие летучести хлорида тория. [c.607]

    В обычном ходе анализа горных пород скандий попадает в осадок от аммиака и принимается за алюминий, если содержание последнего вычисляют по разности. В том случае, когда выделенный аммиаком осадок растворяют во фтористоводородной кислоте и раствор выпаривают для отделения фторидов редкоземельных металлов (стр. 623), скандий также выделяется в осадок и в дальнейшем, в зависимости от способа обработки, сопровождает торий, иттриевые или цериевые металлы. [c.613]


    Осаждение сероводородом из раствора, содержащего минеральную кислоту, служит для отделения от скандия элементов сероводородной группы а осаждение аммиаком — для отделения скандия от магния и щелочноземельных металлов. [c.615]

    Отделение тория и скандия приведено в соответствующих главах, посвященных этим элементам. Следующий метод может дать удовлетворительное отделение церия от редкоземельных металлов. [c.627]

    Скандий образует неустойчивые галогенидные и роданидные комплексы. Для отделения и очистки его от редкоземельных элементов, тория и других сопутствующих металлов используют экстракцию из 7— 9 М НС1 трибутилфосфатом или эфирами алкил-фосфорных кислот, а также из роданидных растворов диэтиловым эфиром. Реэкстрагируют скандий водой или разбавленной соляной кислотой. [c.244]

    Всего известно около 70 собственно редкоземельных минералов и еще около 200 минералов, в которые эти элементы входят как примеси. Это свидетельствует о том, что редкие земли вовсе не такие уж редкие, а это старинное общее название скандия, иттрия и лантана с лантаноидами — не более чем дань уважения прошлому. Они не редки — церия в земле больше, чем свинца, а самые редкие из редкоземельных распространены в земной коре намного больше, чем ртуть. Все дело в рассеянности этих элементов и сложности отделения их один от другого. Но, конечно, лантаноиды распространены в природе не одинаково. Элементы с четными атомными номерами встречаются значительно чаще, чем их нечетные соседи. Это обстоятельство, естественно, сказывается на масштабах производств и ценах на редкоземельные металлы. Самые труднодоступные лантаноиды — тербий, тулий, лютеций (заметьте, все это лантаноиды с нечетными атомными номерами) — стоят дороже золота и платины. А цена церия более 99%-ной чистоты — всего 55 рублей за килограмм (данные 1970 года). Для сравнения укажем, что килограмм мишметалла стоит 6—7 рублей, а ферроцерия (10% железа, 90% редкоземельных элементов, в основном церия) — всего пять. Масштабы использования РЗЭ, как правило, пропорциональны ценам.. .  [c.76]

    Остроумов Э. А. Отделение скандия при помощи пиридина [от редкоземельных металлов]. ЖАХ, 1948, 3, вып. 3, с. 153—160. Библ. с. 160. 5048 [c.196]

    Насыщенный раствор салициловой кислоты в фурфуроле используют для отделения циркония от гафния. Органическими растворителями также экстрагируются салицилаты меди, плутония, скандия и других металлов. [c.218]

    Процесс осуществляется обычно в тиглях из тугоплавких металлов (Та или Мо), иногда в графитовых тиглях, выложенных внутри молибденом. В связи с тем, что скандий и шлак разделяются на два слоя лишь при 1500—1600° С, а по некоторым данным — при 1650° С, восстанавливают фторид скандия при начальной температуре 850°С, повышая ее к концу процесса до 1600° С. После отделения от шлака металлический скандий переплавляют в вакууме для удаления остатков летучих примесей. [c.269]

    Термодинамические данные, обосновывающие процесс восстановления, приведены в гл. II. Процесс обычно ведут в тиглях из тугоплавкого металла (Та или Мо), иногда в графитовых тиглях, выложенных внутри молибденом. В связи с тем, что скандий и шлак разделяются иа два слоя лишь при 1500--1600°, а по некоторым данным при 1650°, фторид скандия восстанавливают вначале при 850°, повышая в конце процесса температуру до 1600°. После отделения от шлака металл переплавляют в вакууме (10 мм рт. ст.) для удаления остатков летучих примесей [55, 56]. Сохраняя тот же вакуум, возгоняют скандий при 1650—1700°. Общий выход чистого металла достигает 95%. В некоторых случаях в слитках скандия содержится от 3 до 12% Са. Очищать [c.42]

    Отделяют элементы, осаждаемые сероводородом. Затем изолируют группу редких земель путем осаждения их щавелевой кислотой в слабокислой (солянокислой) среде. В осадок выпадают редкие земли (за исключением иона Се +), иттрий и торий, а также частично щелочноземельные металлы, которые могут быть увлечены осадком редких земель. К фильтрату после отделения группы редких земель прибавляют аммиак и хлорид аммония и осаждают гидроокиси трех- и четырехвалентных элементов — алюминия, железа, хрома, церия (Се " "), титана, циркония, гафния, таллия, скандия, галлия, индия, урана и бериллия. [c.169]

    Способность редкоземельных металлов количественно осаждаться аммиаком п щелочами позволяет отделить их от щелочноземельных металлов и магния. Гидроокиси редкоземельных элементов не растворимы в едком натре и кали — свойство, которое иногда может быть очень полезным нри отделении пх от посторонних элементов (Ai, Ве и Zn). Иттрий, скандий и торий ведут себя по отношению к щелочам так же, как редкоземельные элементы. [c.41]

    Экспериментальные данные показывают, что отделение скандия от металлов цериевой группы проходит легче, чем от металлов иттриевой группы. [c.80]

    В среде минеральной кислоты (2 н. серной кислоте) галлий осаждается купферроном, и, вероятно, купферрат галлия можно экстрагировать хлороформом и, таким образом, отделить от металлов, не осаждающихся в сильнокислом растворе. Осаждение купферрата применялось для отделения Оа от алюминия, хрома, скандия, редкоземельных металлов, цинка и урана(У1) [c.424]


    Таким образом, из 17 элементов, относящихся к РЗЭ, он учитывал только пять лантан, церий, дидим, эрбий и иттрий. Введенный Менделеевым в первые варианты периодической системы дидим впоследствии был расшифрован (с. 75) как смесь неодима и празеодима. Эрбий, иттрий и открытый к этому времени, но охарактеризованный не полно тербий тоже представляли собой смесь нескольких элементов (с. 65). Они, как выяснилось позже, содержали значительные количества гадолиния, тербия (истинного), диспрозия, гольмия, эрбия (ис-гинного), тулия, иттербия, лютеция, а также скандия и истинного иттрия. Менделееву были хорошо известны экспериментальные трудности, связанные с выделением редких металлов в чистом виде и особенно с их анализом. Обсуждая проблему размещения в периодической системе дидима и лантана, Менделеев писал [18, с. 145] о величине нх эквивалента Ошибку в определении можно ждать еще и потому, что в чистоте препаратов нет возможности убедиться чем-либо киым, как М]Югократною кристаллизациею, а она, как известно, не всегда служит для отделения от изоморфных примесей . [c.83]

    Роданиды скандия. Роданид 8с(СЫ8)з получается взаимодействием сульфата скандия с роданидом бария. Известно также соединение Н8с (СЫ8)4- То и другое вещество используется для отделения скандия при экстракционном способе. 8с(СЫ8)з с роданидами щелочных металлов образует ряд комплексных соединений [28]. Их получают взаимодействием раствора 8с2(804)з и Мв2804 (где Ме — Ы, Ыа, К, ЯЬ, Сз) с раствором Ва(СЫ8)г в соотношении 8с + Ме+ СЫ8" = [c.9]

    Технология переработки скандийсодержащего сырья. Соединения скандия, а тем более металл, до настоящего времени получают в ограниченных масштабах, не выходящих, как правило, из рамок полупромышленных. Большинство предложенных методов реализовано в лабораторных условиях и лишь некоторые получили промышленное применение. Многие предложения о переработке сырья относятся к такому редкому минералу, как тортвейтит, и, естественно, не могут считаться перспективными. Однако следует рассмотреть эти методы, так как они дают возможность проследить возможные пути отделения скандия от многих примесей и оценить эффективность отдельных операций. [c.30]

    Кроме аммиака, катионы этих элементов образуют комплексы с пиридином СзНаМ, метиламином, этилендиамином, которые также можно использовать для их отделения. Катионы Мп + и Ре + (образующие с ними комплексы) не мешают, так как отделяются раньше в 5-й группе катионов по кислотно-щелочному методу. Полезно сопоставить сероводородный и кислотно-щелочной методы (см. табл. 36). В сероводородном методе анализа используется сходство свойств переходных металлов по горизонтальному направлению от скандия до цинка (их одинаковое отношение к сульфиду аммония). При осаждении 4-й группы используется способность ряда элементов образовывать сульфиды (тиооснования) и при растворении 5-й группы — способность ряда элементов образовывать тиоангидриды. В кислотнощелочном методе анализа для разделения тех же катионов используются в основном амфотерность гидроокисей и способность некоторых из них образовывать аммиачные комплексы. [c.191]

    При осаждении некоторых металлов из слабокислых растворов в форме гидроксидов определенный интерес представляет пиридин СбНбМ — слабое органическое основание, позволяющее хорошо регулировать pH раствора. Известен гидролитический способ отделения скандия от редкоземельных элементов в присутствии пиридина (Э. А. Остроумов). [c.102]

    Наиболее характерный метод отделения скандия заключается в выделении. его в виде фторида ЗсРз постепенным введением небольших порций фторосиликата натрия Ка 81Рв (2 г,на 100 мл раствора) в энергично перемешиваемый кипящий раствор анализируемого материала в разбавленной (1 10) соляной кислоте. После добавления реагента раствор кипятят 30 мин (сохраняя первонйГчальный объем раствора добавлением горячей воды) ж затем даьэт осадку отстояться. Прозрачный раствор сливают декантацией, после чего осадок переносят на фильтр и промывают 1 %-ным раствором фторосиликата натрия в разбавленной (1 99) соляной кислоте. Помимо скандия, в осадке содержатся кремний и некоторая часть находившихся в растворе редкоземельных металлов и тория. Перед дальнейшей обработкой, которая может потребоваться, осадок нагревают с серной кислотой для удаления фтора. .  [c.614]

    Отделение скандия (и тория) от редкоземельных металлов проводится осаждением тиосульфатом натрия, как описано в разделе Торий (стр. 604). От цериевой группы скандий можно отделить насыщением раствора сульфатом натрия, в результате чего выделяются двойные сульфаты металлов цериевой группы (стр. 631). [c.615]

    В присутствии избытка щавелевой кислоты или оксалата аммония осаждение далеко не полное [12] вследствие образования в растворе комплексного аниона [5с(С204)з1 . Растворимость оксалата скандия особенно возрастает в присутствии солей аммония и щелочных металлов, которые повышают прочность комплекса. Для отделения 5с от РЗЭ предложено использовать разницу в устойчи-вости их комплексных соединений. Оксалаты скандия и РЗЭ растворяют в водном растворе этилендиаминтетрауксусной кислоты Н4У при pH 6. Скандий и РЗЭ образуют в этих условиях устойчивые комплексные соединения [12]  [c.249]

    Салицилаты бериллия экстрагируются алифатическими спиртами [2311, салицилат ванадия количественно извлекается диизобутилкетоном [2051. Практически полностью экстрагируются салицилаты урана(У1), тория(1 ), если в качестве растворителя используется метилизобу-тилкетоп [399, 400]. Насыщенный раствор салициловой кислоты в фурфуроле был предложен для отделения циркония от гафния [202]. Органическими растворителями извлекаются также салицилаты меди [342[, плутония [3841, скандия и других металлов [999]. Экстракция са-лицилатных комплексов значительно повышается в присутствии пиридина [1529]. Для экстракционно-фотометрического определения европия и тербия была применена экстракция тройных фенантролиУ1-салицилатных комплексов бензолом [13881. [c.278]

    Б аналитической химии применяют четыреххлористое олово для отделения рубидия и цезия от калия хлорстаннатным методом и для омыления простых эфиров фенолов соли висмута — для микрокристаллоскопического определения калия, натрия и других металлов калий теллуристокислый — в качестве диагностического средства в медицине натрий кремнефтористоводородный — для осаждения и отделения скандия. [c.33]

    Для сульфата скандия характерно образование двойных солей с сульфатом аммония и сульфатами щелочных металлов Ме[8с(804)2], Мез[8с(804)з], где Ме-К, Na, NH4 и др. [27]. Двойные сульфаты скандия и аммония или натрия хорошо растворяются в воде и концентрированных растворах сульфатов аммония и натрия. Кз[8с(804)3] практически не растворяется в насыщенном растворе К28О4, что используется для отделения скандия от элементов иттриевой подгруппы Кз[У(804)з] растворяется значительно лучше (в 30 раз больше), чем Кз[8с(804)3]. [c.122]

    Безводный хлорид склонен к образованию двойных солей с хлоридами щелочных металлов. Известны соли MesS le, где Ме — К, Na, NH4, Rb и s. Высокая летучесть хлорида скандия может быть использована в процессе фракционированной сублимации для отделения скандия от большинства сопутствующих ему элементов (лантаноидов, Ве, Ti, Fe, Zr, Hf и др.). [c.124]

    Для количественного флуориметрирования скандия описано применение морина, 8-оксихинолина и салицилал-семикарба-зида (табл. IV-17). Для концентрирования и отделения от некоторых мешающих элементов при работе с первым реактивом использована экстракция бензоата скандия этилацетатом, в слой которого потом добавляют морин [138]. В результате изучения флуоресценции оксихинолинатов ряда металлов этот реактив предложен для определения скандия в осадках, получаемых при выделении суммы элементов группы редких земель [175]. Салицилал-семикарбазид позволяет открывать скандий при содержании 0,01 мкг/мл [87] при количественных определениях изме- [c.175]

    При сравнении физических свойств мёталличе-ского скандия и расположенных рядом с ним в периодической таблице кальция и титана видно, что увеличение энергии связи вследствие отделения 3 й-электронов от атомов металла оказывает сильное влияние на теплоту испарения (табл. 3). Данные этой таблицы свидетельствуют также о влиянии энергии [c.15]


Смотреть страницы где упоминается термин Скандий отделение от металлов: [c.386]    [c.84]    [c.71]    [c.7]    [c.11]    [c.12]    [c.280]    [c.270]    [c.388]    [c.7]    [c.11]    [c.12]    [c.379]   
Ионообменные разделения в аналитической химии (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Скандий



© 2025 chem21.info Реклама на сайте