Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каолин, поверхность

    Определить величину удельной поверхности суспензии каолина (плотность которого 7=2,5-10 кг/м ), если ее частицы принять шарообразными и средний диаметр частиц считать равным 0,5-10 м Суспензию считать монодисперсной. [c.25]

    Адсорбция твердыми телами зависит от величины поверхности чем сильнее раздроблено твердое тело или чем больше его пористость, тем больше поверхность и способность к адсорбции. Золи, обладая предельно большой поверхностью, являются хорошими адсорбентами. Твердые адсорбенты широко используются в практике, особенно древесный уголь, животный и костяной угли, силикагель, каолин, окись алюминия и др. [c.356]


    Сравнительная оценка величины поверхности твердого вещества может быть проведена с помощью красителей. Хорошими адсорбентами для них являются, как известно, силикагель, уголь, каолин, гидроксид алюминия и др.  [c.75]

    Среди различных адсорбентов, применяемых на практике, первое место принадлежит углям (древесному, костному), которые обладают большой пористостью (внутренняя поверхность пор 1 г активированного угля достигает 200—500 м ). Кроме углей используют другие пористые вещества, например силикагель (гель кремниевой кислоты), кварцевый песок, каолин, некоторые алюмосиликаты и др. [c.96]

    Сажи с основным и нейтральным характером поверхности на радикальное разложение пероксида не влияют. Сажи с кислой реакцией поверхности можно использовать для получения сшивающихся композиций полиолефинов лишь при условии введения в состав композиций соединений основного характера, например оксидов металлов. Отмеченные закономерности свойственны не только для сажи, но и для других наполнителей. Так, каолин, поверхность которого имеет кислый характер, резко снижает плотность [c.214]

    Носители или трегеры — пористые, термостойкие, каталитически инертные материалы, на которые осаждением, пропитыванием или другими методами наносят катализатор. При нанесении каталитических веществ на пористый носитель достигается их тонкое диспергирование, создаются большие удельные поверхности при размерах пор, близких к оптимальным п увеличивается термостойкость катализатора, поскольку затруднено спекание его кристалликов, разобщенных на поверхности носителя. При таком методе нанесения достигается экономия дорогих катализаторов, например, платины, палладия, серебра. Носитель, как правило, влияет на активность катализатора. Естественно, что применяются носители не понижающие активность, а повышающие ее. Таким образом, нет точной границы между понятиями — активатор и носитель. Наиболее часто в качестве носителей применяют окись алюминия, силикагель, синтетические алюмосиликаты, каолин, пемзу, асбест, различные соли, уголь. [c.123]

    Крекинг ДТЭ проводят при атмосферном или пониженном давлении, температуре 480—525 С, мольном соотношении вода/ДТЭ = (10- 100) 1, удельной объемной скорости подачи ДТЭ 1—1,5 и длительности рабочего цикла 1—1,5 ч. В качестве катализатора применяют таблетки или зерна из каолина и других природных глин, а также различные окислы и алюмосиликаты. Степень превращения ДТЭ возрастает с увеличением внешней поверхности катализатора и достигает 75—85% при содержании в продукте крекинга 35—40% винилтолуола. [c.109]


    Для частичного обезвоживания каолина использован метод электроосмоса. На осмос-машине с вращающимся анодом барабанного типа, имеющим рабочую поверхность 1,7 м , получено за сутки 1,1т каолина с содержанием влаги 35 %. Анодная плотность тока равна 100 А/м , среднее напряжение на установке 80 В. [c.142]

    Взаимодействие воды с активными центрами минералов может происходить вследствие образования водородных или молекулярных связей. Водородная связь между гидратированными молекулами воды и активными центрами, например, глинистых минералов возникает прежде всего на их поверхности, образующей гидроксид-ными группами октаэдрического слоя. В каолините октаэдриче- [c.57]

    Сорбент-катализатор разработан на базе каолина, имеет низкую удельную поверхность (около 15 м г) и обладает хорошим сродством к асфальтенам и металлам. [c.128]

    Носители с малым размером частиц (от 0,1 до 10 мк), непористые и с большой удельной поверхностью (2—20 мУг). Примеры асбест и дишенты, такие как сажа, каолин, окись железа, окись титана и окись цинка. [c.307]

    Максимальное увеличение прочности резин обеспечивает высокодисперсная двуокись кремния с удельной поверхностью (175380) 10 м /кг и диаметром частиц 5—40 нм (аэросил и другие марки), меньшее — двуокись кремния с удельной поверхностью (30 150) 1Q3 м2/кг (белые сажи У-333 и БС-150), двуокись титана, карбонат кальция, каолин. К ним иногда добавляют мало-усиливающие наполнители диатомиты, кварцевую муку, окись цинка. В качестве термостабилизаторов используют окислы и другие соединения переходных металлов, чаще всего — окись железа, а также печную сажу ПМ-70. Вводя дифенилсиландиол, метил-фенилдиметоксисилан или полидиметилсилоксандиолы с 8 /о (масс.) ОН-групп и более, получают резиновые смеси, хранящиеся без структурирования от 2 до 12 мес. [3]. [c.489]

    Цинксиликатная краска В-ЖС-41 (ТУ 610-1481—78) представляет собой суспензию пигментов и наполнителей в водном растворе калиевого жидкого стекла и не содержит в своем составе органических растворителей. Она поставляется в виде трех компонентов в отдельных упаковках в следующих соотношениях по массе) основа (жидкое стекло)— 100, пигментная смесь алюминиевый порошок и каолин) 28,4 и цинковый порошок — 171,6. Краску В-ЖС-41 наносят в три слоя методом пневматического распыления общей толщиной 180—200 мкм. Нанесение на поверхность с остатками органических покрытий не допускается. Расход краски В-ЖС-41 на один слой — 200— 230 г/м , отвердителя — 50—70 г/м . Визуальный осмотр состояния внутренней поверхности баков должен проводиться 1 раз в год. [c.163]

    На каталитическую активность твердого катализатора влияет величина и состояние поверхности катализатора, структура, наличие примесей и другие факторы. С целью увеличения поверхности соприкосновения катализатора с реагирующими веществами его применяют в тонко раздробленном виде. Обычно такой раздробленный катализатор наносят на какое-либо пористое вещество— носитель (пемзу, асбест, каолин и др.). [c.143]

    В качестве природных катализаторов для ряда процессов (кре кинг, этерификация, полимеризация, производство серы из серии стых газов и другие) могут быть использованы боксит, кизельгур железная руда, различные глины [200—206]. Природные катализа торы дешевы, технология их производства сравнительно проста Она включает операции размола, формовки гранул, их активацию Применяют различные способы формовки (экструзию, таблетиро ввние, грануляцию на тарельчатом грануляторе), пригодные для получения гранул из порошкообразных материалов, увлажненных связующими. Активация исходного сырья заключается в удалении из него кислых или щелочных включений длительной обработкой растворо м"щелочи йли кислоты при повышенных Температурах. При активации, как правило, увеличивается поверхность контактной массы. Наибольшее применение в промышленном катализе нашли природные глины монтмориллонит, каолинит, бейделлит, бентониты и др. Они представляют собой смеси различных алюмосиликатов и продуктов их изоморфных замещений, а также содержат песок, известняк, окислы железа, слюду, полевые шпаты и другие примеси. Некоторые природные алюмосиликаты, например, каолин, обладают сравнительно высокой каталитической активностью в реакциях кислотно-основного катализа уже в естественном виде, после сушки и прокаливания. Большинство других требует более глубокой предварительной обработки кислотой при соответствующих оптимальных условиях (температура, концентрация кислоты, продолжительность обработки). В активированных глинах возрастает содержание SiOa, а количество КагО, СаО, MgO, AI2O3 уменьшается. Часто для уменьшения потерь алюминия в глинах к активирующему раствору добавляют сол , алю.мниия [46]. [c.168]

    Известно, что адсорбция анионных ПАВ велика из-за отрицательного электростатического потенциала, существующего на поверхности породы. Наибольшей адсорбционной способностью, связываемой с положительно заряженными активными центрами, обладают глины. В частности каолинит, весьма распространенный в глинах. Латеральные грани кристаллов каолинита имеют поверхностный заряд, который в значительной степени зависит от значения pH, что в свою очередь влияет на адсорбцию АПАВ. [c.88]


    Покрытие на основе бакелитового лака марки ЛБС-1 с каолином. Покрытие состоит из трех слоев состава 17, который готовят смешением 100 масс. ч. бакелитового лака марки А, 18 масс. ч. каолина, 9 масс. ч. нафталина и 15 масс. ч. бензола [57]. Состав 17 наносят на поверхность пневматическим распылением. Режим сушки покрытия и оптимальная его толщина аналогичны описанным ранее для покрытия на осное бакелитового лака марки А с алюминиевой пудрой. Однако в результате сложности осуществления процесса отверждения практическое применение покрытия на основе бакелитового лака марки А затруднено. [c.76]

    Мелкие трещины выявляются методом цветной дефектоскопии, сущность которого заключается в следующем. На поверхность детали, очищенной ацетоном или бензином, наносятся кистью или пульверизатором 3—4 слоя проникающего раствора, подкрашенного анилиновым красителем (15 г красителя Судан-111 на 1 л раствора). Мелкие детали погружаются в красящий раствор. Раствор под действием капиллярных сил проникает в дефектные места детали. Затем контролируемая деталь промывается 5% раствором кальцинированной соды и вытирается 1шсухо. На очищенную поверхность кистью или пульверизатором наносится тонкий слой белого абсорбирующего покрытия, имеющего следующий состав 0,6 л воды, 0,4 л этилового спирта, 300—350 г каолина или мела. Жидкость, выделяющаяся из поверхностных дефектов под действием абсорбирующего покрытия, окрашивает его в красный цвет с появлением красных пятен или полос. Этот метод дает возможность обнаружить поверхностные дефекты размером до 0,01 мм при глубине 0,03—0,04 мм. Однако глубину трещи[1 цветной дефектоскопией определить нельзя. Контроль проводится невооруженным глазом или с помощью лупы 5—7-кратпого увеличения. Применяется цветная дефектоскопия для углеродистых, а также нержавеющих сталей, у которых образование мелких трещин от коррозионного растрескивания наблюдается около сварных швов. [c.138]

    АЛЮМОСИЛИКАТЫ — природные или искусственные силикаты, в состав которых входит алюминий. А.— самые распространенные соединения згмной коры. К ним относятся полевые шпаты, слюды, нефелин, цеолиты и др. На поверхности земной коры А. постепенно вывет-риваюся и разрушаются, образуя обычные глины, основой которых являются продукты разложения А.— кварц и каолин. Природные и искусственные А. широко применяются в разных отраслях народного хозяйства. Искусственные А.— цеолиты, пермугиты — применяются в качестве ионообменников для умягчения жесткой воды, в качестве катализаторов и носителей катализаторов (см. Силикаты). [c.19]

    Выполнены опыты по разделению суспензий мела, талька, каолина, окисей алюминия и кремния в водных растворах карб-окснметилцеллюлозы (КМЦ) и гидроксиэтилцеллюлозы (ГЭЦ) на горизонтальной фильтровальной перегородке поверхностью 64 см . [c.56]

    Основными недостатками бакелитового лака являются хрупкость пленки и невысокая адгезия пленки к металлу. Для покрытия бакелитовым лаком металлическая поверхность должна быть предварительно подготовлена. Для повышения прочностных по-калателс покрытий обычно наносят четыре-пять слоев лака, которые подвергают самостоятельной термообработке при температуре 160—170 С. Прочность сцепления бакелитового лака с металлом значительно увеличивается при введении в лак наполнителя (графита, андезито1юй муки, каолина) в количестве до 40%. [c.404]

    Для каолинита нехарактерны изоморфные замещения катионов в обеих сетках, поэтому элементарный слой его кристаллической решетки является электронейтральным. Достаточно прочная связь между соседними слоями, обусловливающая жесткость кристаллической решетки, осуществляется водородными связями, которые вознпкают между поверхностными гидроксидами октаэдрического и кислородом тетраэдрического слоев. У галлуазита это простряп-ство заполнено одним слоем молекул воды, размещенных в виде гексагональной сетки и связанных друг с другом и с примыкающими алюмосиликатными слоями также водородными связями. Вследствие этого внутренние поверхности элементарных слоев в каолините и галлуазите не могут взаимодействовать с жидкостями. 20 [c.20]

    Каталитическая активность неразрывно связана с величиной поверхности, поэтому часто производят осаждение катализатора на какое-либо инертное пористое вещество (каолин, силикагель, бисквит, уголь, пемза, асбест, сульфат бария, карбонат кальция и т. д.),. которое называют носителел , или трегером. [c.52]

    Полученные данные показали, что трифлуралин хорошо адсорбируется на поверхности таких компонентов, как белая сажа и каолин, и, таким образом, становится малолетучим ингредиентом препаративной формы. [c.129]

    ГЛАЗУРЬ (нем. Glas — стекло) — тонкое стекловидное покрытие на керамических изделиях, получаемое нанесением на поверхность изделия кремнезема и глиноземно-щелочных силикатов и оксидов металлов с последующим обжигом в печах при температуре до 1400° С. Глазурованные керамические изделия водонепроницаемы, устойчивы против действия кислот и щелочей, имеют привлекательный внешний вид. Сырьем для изготовления Г. служат кварц, полевой шпат, карбонаты кальция или магния, каолин, сода, поташ, селитра, бура, хлорид натрия, свинцовый сурик и др. Для окрашивания Г. в их состав вводят оксиды или соли кобальта, меди, хрома, марганца, железа и др., которые при сплавлении растворяются в Г. с образованием окрашенных силикатов. Для получения Г. белого цвета добавляют 5—10% криолита, диоксида олова или циркония. [c.76]

    Примером пептизации с помощью поверхностно-активных веществ может служить пептизация высокодисперсного порошка кровяного, угля пикриновой кислотой и мылами. Окись железа также может быть пептизирована мылами, а окись алюминия — ализарином. Высокодисперсный порошок гидрофильного каолина пептизируется гуминовыми кислотами. Хорошим пептйзирующим действием часто обладают высокомолекулярные вещества, макромолекулы которых способны адсорбироваться на частицах и придавать им заряд или сольватную оболочку. Согласно новым воззрениям пептизация может обусловливаться и взаимным отталкиванием совершающих тепловое движение гибких цепных молекул, только частично адсорбировавшихся на поверхности коллоидной частицы. Более подробно об этих взглядах сказано в гл. IX. [c.255]

    Три встряхивании полярной жидкости с неполярной в присутствии твердого эмульгатора его крупинки прилипают к межфазной поверхности, причем большая часть поверхности частиц эмульгатора находится в той жидкости, которая их лучше смачивает. Таким образом, на капельках образуется как бы броня , предотвращающая их коалесценцию. Понятно, что если твердый эмульгатор лучше смачивается водой (например, каолин), такая броня возникает со стороны водной фазы при этом образуется эмульсия типа м/в. Если же твердый эмульгатор лучше смачиваате Г неполярным углеводородом (например, сажа), то образуется эмульсия типа в/м. Сказанное иллюстрируется схемой, изображенной на рис. XII,4. В случаях / а и //б крупинки твердого эмульгатора находятся с наружной стороны капелек, и поэтому соответ- [c.376]

    На поверхности Земли минералы и горные породы, соприкасаясь с атмосферой и подвергаясь механическому и химическому дейс твию воды и воздуха, постепенно изменяются и разрушаются. Это разрушение, обусловленное совместной деятельностью воды и воздуха, называется выветриванием. Напри.мер, вода, содержащая диоксид углерода, действует на ортоклаз таким образом, что КоО отщепляется и, соединяясь с СО2, дает поташ К2СО3 отщепляется также часть 8102, а остаток соединяется с водой и образует новый силикат — каолин, составляющий основу различных глин. [c.420]

    Кроме того, в ГАХ используют в качестве адсорбентов пористые стекла, получаемые измельчением натрийборсиликатного стекла, с удельной поверхностью Ю —5-10 м /кг, аэросилы (синтетический непористый высокодисперсный диоксид кремния с удельной поверхностью, достигающей сотен м /кг), каолин, пемзу, кварц и другие природные минералы. [c.235]

    Вопрос о взаимодействии воды с поверхностью глинистых минералов возник в связи с непосредственными нуждами грунтоведения, мерзлотоведения и почвоведения еще в средине XIX столетия. Однако началом действительно научного подхода к решению этой проблемы необходимо считать опубликованную в 1938 г. работу Хендрикса и Джефферсона, в которой были предложены структурные модели воды, адсорбированной на монтмориллоните, вермикулите, галлуазите и каолините. Эти модели, с одной стороны, были основаны на ориентировке адсорбированной воды около кислородных атомов или гидроксильных групп поверхности- слоистых силикатов, а с другой — на тетраэдрическом распределении зарядов в молекуле воды. Анализ литературных данных показывает, что характер взаимодействия воды с поверхностью и структура адсорбата тесно связаны с особенностями кристаллического строения различных типов глин. [c.100]

    Наносимые на гранулированные удобрения припудривающие минеральные вещества поглощают находящуюся на поверхности зе-)ен влагу и тем препятствуют возникновению фазовых контактов. Ъэтому эти добавки должны быть гигроскопичными и иметь большую влагоемкость. Они должны обладать достаточной адгезией к поверхности кондиционируемого материала, чему способствует, в частности, их высокая дисперсность (меньше 50 мкм) и не изометрическая форма частиц. Из гидрофильных неорганических припудривающих добавок наиболее пригодны природные и искусственные силикаты и алюмосиликаты —диатомит, бентонит, каолин, нефелин, глина [c.282]

    Основными минералами, слагающими диатомит Мальчевского месторождения, являются опал, кварц, гидрослюды и минералы группы монтмориллонита. Бентонит, крупнейшего в России и СНГ Тарасовского месторождения, кроме монтмориллонита, включает кварц, слюды, каолинит, опал. Ионообменный комплекс диатомитов и бентонитов носит щелочноземельный характер. Обогащение приводит к увеличению содержания опала и глинистой составляющей в диатомите, монтмориллонита - в бентоните, при этом возрастают удельная поверхность, пластичность и прочность материалов. [c.62]

    Этот слой разделяет полублестящий и (элестящие слои никеля, его толщина составляет 1—2 мкм. В результате повышенного содержания серы средний слой никеля в контакте с агрессивной средой (в порах покрытия) приобретает отрицательный потенциал по отношению как к нижнему, так и к верхнему слою, сильно замедляя коррозию обоих слоев (см. рис. 3.15). При этом коррозия в порах промежуточного слоя, служащего активным анодом, распространяется горизонтально вдоль границы блестящего и полублестящего слоев. Таким покрытием являются, по существу, любые покрытия никеля, содержащие 0,1% серы в них содержится большое число токонепроводящих частичек (в основном каолина), размер которых составляет 0,01 — 0,02 мкм. Сил-никель применяют как последний слой перед нанесением хрома в защитно-декоративном покрытии. Вследствие наличия в никелевом покрытии большого числа токонепроводящих включений в слое хрома образуется множество мелких пор — от 20 000 до 50 000 на 1 см , т. е. микропористый хром. В таком покрытии коррозия нижележащего слоя никеля, как анода в образующихся коррозионных микроэлементах, протекает равномерно по всей поверхности и, таким образом, проникновение ее вглубь замедляется. Толщина слоя сил-никель составляет 1—2 мкм. [c.273]


Смотреть страницы где упоминается термин Каолин, поверхность: [c.513]    [c.37]    [c.78]    [c.89]    [c.256]    [c.480]    [c.76]    [c.40]    [c.179]    [c.585]    [c.334]    [c.7]    [c.354]    [c.676]    [c.214]   
Газовая хроматография в практике (1964) -- [ c.33 ]

Газовая хроматография в практике (1964) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Каолин

Каолин каолинит

Каолинит

температуры фиг каолинита от удельной поверхности III



© 2025 chem21.info Реклама на сайте