Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обратные связи технологические

    Биотехнологическая система. БТС характеризуется большим разнообразием технологических процессов и их аппаратурным оформлением, наличием прямых и обратных связей между элементами. Конкретное аппаратурное оформление БТС зависит от особенностей подготовки питательных сред и сырья для культивирования микроорганизмов и получаемого целевого продукта микробиологического синтеза [7, 8]. В биотехнологической системе реализуются различные процессы обработки материалов механические, химические, тепловые, гидродинамические, диффузионные и биохимические. Рассмотрим в качестве примера технологическую схему производства белковой биомассы дрожжей из н-парафинов нефти (рис. 1.8). Схема включает ряд основных стадий производства, в которых происходит последовательная переработка исходного сырья в целевой продукт. [c.14]


    Выполнение оптимального технологического проекта могут значительно облегчить вычислительные машины. Законы статистики и принципы обратной связи можно использовать для определения методов выбора условий реакции или основ расчета. Кроме того, при помощи вычислительных машин можно механизировать выбор этих вариантов, а также произвести огромное количество расчетов, необходимых для их выполнения. Только таким путем мы можем осуществить многочисленные повторные вычисления, нужные для обеспечения оптимальности расчета и рабочих условий. [c.172]

    Поток информации, направленный от исполнительных механизмов машины-автомата или их рабочих органов к системе управления, передает сведения о состоянии объекта обработки, рабочих органов и тех или иных параметров технологического процесса. Эта информация может характеризовать положение объекта обработки, его размеры и их изменение в процессе рабочих операций, износ рабочих органов, температуру, давление и т. п. Через этот канал осуществляется обратная связь технологического процесса с системой управления, что позволяет регулировать его в зависимости от контролируемых параметров. [c.18]

    Стабилизация входных параметров состоит- в том, что осуществляется регулирование всех входящих технологических потоков таким образом, чтобы внешние возмущения не влияли на процесс. Это значительно упрощает систему регулирования собственно процесса. Такая схема, довольно часто встречающаяся в нашей промышленности, тем не менее довольно непрактична. Во-первых, для обеспечения равномерного расхода и состава веществ между агрегатами приходится устанавливать большие емкости во-вторых, по этой схеме условия погоды, часто оказывающие серьезное влияние на процесс, регулироваться не могут. Для инженера по автоматическому регулированию это означает, что большинство независимых переменных при стабилизации входных параметров регулируется независимо друг от друга очень немногие из них связаны с процессом обратной связью. [c.110]

    Это самые настоящие цепи обратной связи, так как результаты предыдущих расчетов должны использоваться для выбора характера и направления изменений, вносимых в последующий пробный проект или в последующие пробные технологические условия. Обе внутренние обратные связи показаны на рис. ХПЫ в заштрихованных областях [c.171]

    Таким образом, для процесса проектирования, как кибернетической системы, характерным является наличие многообразных обратных связей в виде постоянного, непрерывного согласования и коррекции не только конечных, но и промежуточных результатов разработки проекта с точки зрения их соответствия поставленной цели (ТЗ, ТР и ТЭО). Обратные связи не только позволяют корректировать техническую и монтажно-технологическую документацию по информации о пуске головного промышленного образца данного объекта, но также позволяют осуществлять принципиальное качественное совершенствование проектов за счет коррекции и обновления входной информации для проектно-конструкторских разработок, осуществляемых путем использования результатов промышленной эксплуатации спроектированного объекта и применения новых научных достижений (см. рис. ПЫ). [c.112]


    Сигнальные графы весьма полезны при анализе сложных ХТС, при выводе основных соотношений теории обратной связи, а также при исследовании той роли, которую выполняет какой-либо отдельный параметр во всей системе. Структурная блок-схема оказывает помощь при анализе характеристик элементов ХТС. После того как из результатов расчета становится известной структурная блок-схема системы, необходимо в отдельности реализовать коэффициенты функциональных связей отдельных блоков, входящие в матрицы преобразования соответствующих элементов. Применение сигнальных графов обеспечивает гибкий метод определения большого разнообразия технологических схем, эквивалентных данной системе. Таким образом, хотя общий метод синтеза для реализации заданной передаточной функции ХТС отсутствует, сигнальные графы значительно облегчают синтез системы. [c.169]

    Текущая подготовка производства, в свою очередь, расчленяется на фазу, связанную с модернизацией и усовершенствованием процессов, продуктов, технологических процессов, освоением новых мощностей, контролем производства, нормированием и организацией труда и производства, предусматриваемыми планом предприятия на будущий год, и фазу, основанную на системе обратной связи . В результате контроля производства, анализа технической отчетности, выборочных обследований уточняются параметры процессов, нормы расхода сырья, материалов, труда, порядок контроля производства в текущем году. [c.33]

    Из анализа технологической схемы и структурной блок-схемы ХТС следует, что все параметры системы по характеру воздействия можно условно разделить на внутренние X, 1) и внешние 6, У, Т, ) в блок-схему входят перекрестные обратные связи все параметры системы взаимосвязаны. Например, изменение любого из внешних воздействий абсорбера даст реакцию на выходной параметр через передаточную функцию колонны и последействие через контуры внутренней обратной связи. [c.195]

    Технологическое и автоматическое управление работой крупнотоннажных реакторов сильно затрудняется одновременным действием в них положительных и отрицательных обратных связей, влияющих на параметрическую чувствительность и устойчивость процесса. [c.139]

    В связи с тем, что технологическая схема производства стирола имеет рециркуляционные потоки, для ее расчета воспользуемся принципом разрыва обратных связей (см. работу [12, с. 311). Входные и выходные переменные разомкнутой схемы, полученные за счет разрыва обратных связей замкнутой схемы, будем в дальнейшем называть соответственно условно-входными и условно-выходными переменными. Расчет схемы заключается в итеративном согласовании условно-входных и условно-выход-ных переменных с заданной степенью точности. [c.170]

    В общем случае химико-технологическая система может содержать так называемые обратные связи по веществу (рециклы) и теплу, охватывающие один или несколько ее аппаратов. Расчет такой (замкнутой) схемы, необходимый для вычисления критерия оптимизации (и функций ограничений) при заданных значениях варьируемых параметров, приходится выполнять итерационными методами, т. е. проводить неоднократный расчет аппаратов системы для некоторой (сходящейся) последовательности переменных, определенных в разрывах обратных потоков. [c.180]

    Контактные аппараты сернокислотного производства, работа-ющ,ие по схемам одинарного контактирования (см. рис. 16) и двойного контактирования — двойной абсорбции (рис. 36), представляют собой замкнутые химико-технологические системы. Эти системы включают последовательно функционирующие слои катализатора и теплообменники и содержат обратные связи по теплу между реакционной смесью и исходным газом. Наличие обратных тепловых потоков в системе обусловливает возможность появления неустойчивых режимов [62, 631. [c.182]

    Химико-технологические схемы можно разделить на два класса — разомкнутые и замкнутые схемы. Замкнутыми будем называть схемы, имеющие по крайней мере одну обратную связь ( рецикл ) схемы, не имеющие обратных связей, яа.зовем разомкнутыми. Разомкнутую схему, которая получается из замкнутой разрывом всех обратных связей, будем называть разомкнутой схемой, соответствующей данной замкнутой. Простейшей замкнутой схемой является последовательность соединительных блоков с рециклом (см. рис. 42). [c.194]

    Наличие обратных связей значительно усложняет при прочих равных условиях расчет и оптимизацию химико-технологических схем. Трудности, которые при этом возникают, удобно проследить на схеме с рециклом (см. рис. 42). Рассмотрим вначале вопросы расчета данной схемы. [c.195]

    Наличие различных обратных связей в химико-технологических процессах (рециклы, обратные связи по теплу, диффузия и др.) создают возможность появления неустойчивости стационарных режимов. Это обусловливает важность и актуальность разработки методов изучения устойчивости процессов химической технологии. [c.229]

    Ранее было отмечено, что контактные узлы сернокислотного производства (см. рис. 23, 24) содержат обратные связи по теплу между реакционной смесью и исходным газом, т. е. представляют собой замкнутые химико-технологические системы. Как показано в работах [85, 86], наличие в схемах контактных узлов обратных тепловых потоков может привести к появлению неустойчивых режимов при определенных значениях параметров. При этом условия баланса по веществу и теплу в разрывах обратных потоков, выполнения которых обычно достигают при проведении итерационного расчета схемы относительно переменных в разрывах , целесообразно перенести на уровень оптимизации, рассматривая их как ограничения типа равенства и считая переменные в разрывах дополнительными варьируемыми переменными [см. задачу 4, выражения (I, 79)—(I, 81)]. Это позволяет в каждой точке расширенного пространства варьируемых переменных, полученной в процессе оптимизации, выполнять расчет лишь разомкнутой схемы, и, таким образом, избежать при выполнении вычислений появления нежелательных нулевых режимов и неоднократной проверки условий неустойчивости. Эти условия достаточно проверить лишь в конечной (оптимальной) точке. Таким образом, прием вынесения ограничений в критерий оптимизации (составную функцию), позволяет перейти к эквивалентной задаче оптимизации для разомкнутой схемы в расширенном пространстве варьируемых переменных. [c.146]


    При разработке программы идентификатора в цепи обратной связи использовался пакет программ для М-6000, рассчитанных на адаптивные АСУ технологическими процессами с идентификатором пакет разработан Институтом проблем управления АН СССР [26]. [c.215]

    Управление по параметрам, характеризующим ход технологического процесса, позволяет компенсировать погрешность в момент ее возникновения. Его можно осуществлять или по заранее заданной программе или с обратной связью, или комбинированно (рис. 1.81). [c.131]

    Аналогичным образом формулируется математическая модель ХТС, которая состоит из набора отдельных технологических аппаратов, т е. представляет собой определенный набор математических моделей типа (4). При этом следует учитывать, что она должна отражать охват отдельных аппаратов прямыми и обратными связями. [c.46]

    Рассмотренная классификация подсистем верна при рассмотрении собственно процессов разложения и кристаллизации. Тогда возникают внутренние автоколебания, что и наблюдается при расчете первой технологической схемы. При наличии во второй технологической схеме рецикла пульпы из десятой секции в первую роль второй обратной связи играет сам рецикл, а вторым регулятором является скорость рецикла. Источником вещества служат поступающие в экстрактор апатит и серная кислота. Колебательной подсистемой служит суспензия в реакторе. Таким образом, в такой системе с рециклом должны появиться автоколебания системы за счет кинетики разложения. [c.41]

    Из схемы понятно, что в технологическом комплексе конденсатор охватывается отрицательной обратной связью с пере- [c.94]

    Третий — в случае, когда катализатор и реагенты процесса известны, точнее, зафиксированы, повысить оптимальность его можно за счет рециркуляции, т. е. использованием преимуществ, создаваемых обратной связью. Варьируя параметрами рециркуляции, можно повысить и мощность реактора по сырью, и абсолютный выход целевых продуктов сложной реакции. Это — технологический подход. [c.11]

    Команды "На вход" являются в основном сигналами обратной связи технологического оборудования и приспособлений с роботом. Такие команды могут поступать от датчиков, установленных в магазинах заготовок и присп. облениях, о наличии в них заготовок и деталей, чтобы избежать холостого хода манипулятора или двойной загрузки приспособления. Обязательна команда на систему управления роботом от подвижного ограждения рабочей зоны станка о полном его перемещении в крайнее положение, а также от устройства ЧПУ или от самого станка об окончании цикла обработки детали. [c.120]

    Стационарные режимы. Адиабатический процесс, идущий с выделением тепла, можно проводить в автотермических условиях, используя горячую смесь продуктов для подогрева исходной смеси во внешнем теплообменнике (рис. VIII.7). В такой технологической схеме, очевидно, появляется обратная связь между температурой смеси продуктов реакции и исходной смеси, которая может приводить к неустойчивости некоторых стационарных режимов процесса и появлению скачкообразных переходов между различными режимами при плавном изменении характерных параметров процесса. [c.344]

    Ранее было показано, что традиционное проектирование химических производств даже с использованием ЭВМ — весьма сложный и трудоемкий процесс, выполняемый различными специализированными коллективами проектировщиков. При этом один коллектив, например, занимается подбором катализаторов и определением параметров реакторов, другой — разрабатывает методы разделения продуктов хихмического превращения, третий — подбором материалов, оборудования и т. д. с широким привлечением аналогий и типовых решений. Выполненные исследования по отдельным узлам объединяются в технологические схемы и апробируются на лабораторных и пилотных установках. Результаты экспериментальных исследований в порядке обратной связи поступают к проектировщикам и являются основой для внесения изменений и усовершенствований на любой стадии обработки проекта. [c.29]

    И технических решений) появляются итерационные циклы, охватывающие обратными связями отдельные этапы. Кроме того, в технологической схеме имеются рециклические материальные и энергетические потоки, параметры которых при декомпозиционной стратегии проектирования необходимо уточнять итерационно. Поэтому проектирование оптимальных технологических схем заключается в многократном расчете отдельных элементов и их комплексов с целью выбора наилучшего технического решения и уточнения параметров потоков. В связи с этим (как отмечалось в предыдущем разделе) моделирующие системы строятся как многошаговые с возвратом на предыдущие шаги в зависимости от результатов анализа получаемой промежуточной информации. [c.425]

    Обратная (рециклическая) технологическая связь (рис. 1-8, г) характеризуется наличием обратного технологического потока, связываюш его выход какого-либо у-го последующего элемента с входом г-го предыдущего элемента ХТС, которые соединены последовательно между собой. Таким образом, обратная технологическая связь предусматривает многократное возвращенпе в один и тот же элемент системы технологических потоков всех реагирующих компонентов плп одной из фаз в ХТС, в которой осуществляются гетерогенные процессы. Указанная связь может охватывать как несколько элементов или подсистем ХТС, так и некоторый отдельный элемент системы, соединяя выход данного элемента с его входом. [c.27]

    Описанные выше инстэументальные методы пригодны лишь на этапе изучения процессов структурирования в НДС. Для использования знаний о точках структурных фазовых переходов в промьш1ленности необходимо иметь метод экспресс-определения этих точек на технологической схеме для любого процесса и изменения их положения при смеие технологического режима или изменении состава сьфья. Для этого нами была создана модель иерархического структурирования НДС в процессах жидкофазного термолиза с использованием фрактальных механизмов агрегирования. Эта модель реализована в виде компьютерной программы. С ее помощью можно осуществить автоматизированный процесс, в котором анализаторы технологических параметров процесса и качества сырья задают исходные данные для модели и расчет, произведенный в реальном режиме времени, при помощи обратных связей позволяет соответствующим образом изменять ход процесса. Ниже мы приведем разработанные нами основные механизмы этой модели. [c.15]

    В докладе предложен программный способ построения адаптивных систем управления технологическими процессами на основе классического регулируемого электропривода с обратной связью по положению, управляе.мого от микропроцессорного устройства числового программного управления (УЧПУ). Для этого в качестве параметра адаптации взята величина рассогласования в следящем электроприводе, текущее значение которой в цифровой форме всегда присутствует в операционной среде УЧПУ и имеет детерминированную функциональную связь с такими параметрами технологического процесса, как давление, концентрация и т.д. Эго позволило отказаться от специальных датчиков, измеряющих текущее значение адаптируемого параметра, а его значение в реальном времени алгоритмически определять из величины рассогласования привода с управлением от УЧПУ. Важность решения этой задачи для нефтехимической промышленности очевидна, так как в настоящее время наметилась тенденция внедрения для управления химико-технологическими процессами микропроцессоров и регулируемых электроприводов как удобных в управлении сервоприводов. [c.186]

    Рассмотрим работу алгоритма. УЧПУ по информации от ДОС (датчика обратной связи) по положению вычисляет значение е и сравнивает его с 8зац, представленным в виде технологического параметра. Если е > то происходит уменьшение заданной по программе скорости вращения 8зад на Д. Если е <, то значение увеличивается на Д. При е = е д, заданная по программе скорость вращения сохраняется. [c.187]

    В пространстве из.меряемых технологических параметров процесса, принятых в качестве ситуационных Тфизнаков, предварительно получают ситуационные модели. Оставшиеся измеряемые параметры относят к неситуационным. Сюда входят, например, параметры с малой относительной чувствительностью к ПК, быстроменяющиеся параметры. Подстройка моделей в рабочем режиме проводится на основе введения обратной связи по результатам лабораторных данных в случаях, когда погрешность оценки ПК превышает максимально допустимую. При этом возможно несколько вариаетов. [c.190]

    Обратная (рециклическая) технологическая связь. Современные ХТС характеризуются большим числом обратных (рециркулирующих) потоков. Это обусловлено стремлением более полно использовать сырье путем рециркуляции непревращенной его доли теплоты или холода технологических потоков в системе для подогрева холодных или охлаждения горячих потоков, т. е. для создания безотходных энергозамкнутых ХТС (рис. 1.20). Кроме этого, рециркуляцию применяют как способ повышения скорости процесса. Например, при синтезе аммиака для поддержания высокой скорости реакции процесс проводят только до 20%-ной степени превращения, отделяют продукт от реакционной смеси и возвращают ее в цикл на смешение со свежей азото-водо- [c.23]

    Алгоритм расчета схемы при фиксированных значениях варьируемых переменных. Контактный аппарат сернокислотного производства (см. рис. 16) содержит обратные связи и представляет собой, таким образом, замкнутую химико-технологическую систему. Расчет залшнутых схем, как известно, сводится к решению некоторой системы (нелинейных) уравнений относительно разрывных переменных на основе расчета соответствующей разомкнутой схемы. Требуемые для расчета схемы разрывы потоков [c.101]

    Неуниверсальность ряда известных математических моделей, вызванная тем, что в принципе не удается учесть даже существенно влияющие на ход процесса факторы — одно из основных препятствий к их применению для целей управления. Так, например, переход на сырье другого типа в пределах одной и той же технологической установки обычно приводит к тому, что используемая математическая модель перестает быть адекватной. Обеспечить адекватность модели процессу можно путем ее систематического уточнения, по результатам наблюдений, т. е. адаптацией математической модели к изменяющимся условиям протекания процесса. Этот способ, часто применяющийся в задачах управления, не используется при оптимальном проектировании, поскольку в этом нет необходимости (расчет проводится для фиксированных внешних условий) и к этому нет предпосылок (отсутствует обратная связь). [c.85]

    Расчетная схема (рис,93) несколько отличается от технологической, так как в качестве расчетного блока не всегда удобно брать отдельный аппарат или стадию процесса. В частности, вместо комбинированного аппарата,2 приходится брать три расчетных блока первый теплообменник смеситель второй теплообменник. Расчетнм схема имеет две обратные связи (штриховые линии), наличие которых затрудняет определение последовательности расчета и требует больших затрат машинного времени. Поэтому связи условно разрываются, а в местах разрыва задаются начальные приближения по входящим в аппарат перемея- [c.283]

    При управлении объектами и технологическими процессами с распределенными параметрами и большим запаздыванием традиционные системы управления с отрицательной обратной связью являются малоэффективными. Тогда применяют инвариантное и конбиниоованное управление [б,  [c.72]

    При расчете процесса разложения апатита по второй технологической схеме с рециклом получили, что фазовые траектории лежа на странном аттракторе. На рис. 2 приведены фазовая траектория решения системы уравнений математической модели процесса получения ЭФК в десятисекционном экстракторе. Глобальный фазовый портрет второй технологической схемы напоминает странный аттрактор Лоренца. Видно, что фазовая траектория имеет два неустойчивых предельных цикла. Фазовые траектории, начинающиеся справа, накручиваются на правый предельный цикл, затем через некоторое время, осуществляя автоколебания, сдвигаются влево и накручиваются на левый предельный цикл. Через некоторое время начинается сдвиг вправо, и траектория вновь накручивается на правый предельный цикл и т. д. Наличие рецикла приводит к наложению на собственные автоколебания системы за счет обратной связи между механизмами разложения апатита и кристаллизации дигидрита сульфата кальция еще и колебаний, связанных с наличием цикла в экстракторе. Механизм колебаний за счет обратной связи по кинетике процесса был описан выше. Когда система, пройдя левый предельный циют, стремиться выйти на устойчивое положение - отрицательный режим по SO3, рецикл дает повышение концентрации SO3, что заставляет систему двигаться вправо, накручиваясь на правый предельный цикл. Затем система, проходя через правый предельный цикл, за счет образования пленки стремится ко второму устойчивому состоянию - повышению концентрации SO3 и понижению концентрации СаО, но рецикл приводит к понижению концентрации SO3, и фазовая траектория сдвигается влево. Было рассчитано, что странный аттрактор наблюдается при времени цикла в интервале 30-60 мин. При этом увеличение рецикла (время цикла менее 30 мин) приводит к уменьшению расстояния между предельными циклами, а уменьшение рецикла (время цикла более 60 мин) приводит к увеличению этого расстояния. Увеличение рецикла [c.44]

    В области гетерогенных равновесий диаграммы систем жидкость-пар и жидкость - твердое тело характеризуются наличием особых точек различной компонентности, что налагает определенные ограничения на процессы ректификации и кристаллизации. Синтез сложных технологических схем, как однородных, так и неоднородных, позволяет выявить оптимальные схемы. Все перечисленные объекты исследования нелинейны, зачастую имеют прямые и обратные связи, и их моделирование впрямую исключает возможность обобщения полученных результатов. Привлечение различных топологических приемов и методов, основанных на топологических инвариантах, позволяет создать общую качественную теорию в области колебательных химических реакций, где в параметрическом пространстве наряду со стационарными точками наблюдают, устойчивые, неустойчивые, а также устойчиво-неустойчивые предельные циклы. В области гетерогенных равновесий появляется возможность создать общую теорию распределения стационарных точек и сепаратрических многообразий, ограничивающих развитие процессов ректификации и кристаллизации и разработать алгоритмы синтеза оптимальных схем разделения. [c.57]

    В качестве регулирующих воздействий, используя принцип обратной связи, обычно выбирают входные величины объекта. Изменяя значения этих воздействий, компенсируют возмущения технологического режима и цоддерживают необходимые значения регулируемых величин. [c.33]

    Кибернетически этот метод представляет собой управление с технологической обратной связью. Метод эволюционного планирования сводит задачу отыскания оптимального решения к выделению малого изменения полезного сигнала у на большом шумовом поле. [c.214]


Смотреть страницы где упоминается термин Обратные связи технологические: [c.109]    [c.31]    [c.176]    [c.75]    [c.77]    [c.290]    [c.32]    [c.110]   
Методы кибернетики в химии и химической технологии (1971) -- [ c.214 ]

Методы кибернетики в химии и химической технологии (1971) -- [ c.214 ]

Методы кибернетики в химии и химической технологии Издание 3 1976 (1976) -- [ c.189 ]




ПОИСК





Смотрите так же термины и статьи:

Обратная связь

Технологические связи



© 2025 chem21.info Реклама на сайте