Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергетический поток

    Удельные тепловые потоки представляют собой энергетические потоки, подводимые к рабочему телу АХМ (или отводимые от него) и отнесенные Eia единицу (1 кг) количества пара, сжижаемого в конденсаторе. В соответствии с этим различают удельные тепловые потоки генератора, дефлегматора, конденсатора, испарителя, абсорбера, а также потоки, характеризующие регенеративный теплообмен в теплообменниках. Расчет э их величин основан на уравнениях тепловых балансов соответствующих аппаратов. [c.190]


Рис. 1. Схема материальных и энергетических потоков производства. Рис. 1. <a href="/info/28473">Схема материальных</a> и <a href="/info/32570">энергетических потоков</a> производства.
    Цель расчета любых технологических процессов — определение основных технологических параметров процесса, материальных и энергетических потоков и размеров оборудования. [c.76]

    Доведение до минимума температурных налеганий отдельных фракций на установках АТ и АВТ является одной из задач по оптимизации технологического режима. Выбор рациональной схемы отдельных узлов, правильное использование энергетических потоков, оснащение современных установок эффективным оборудованием с высоким к. п. д. средствами, контроля и автоматики, могут гарантировать высокие технико-экономические показатели промышленной установки и обеспечение большинства вторичных процессов (пиролиза, каталитического крекинга, риформинга, селективных очисток и др.) качественным сырьем. [c.26]

    После завершения работ названного этапа оказывается возможным приступить к предварительной компоновке оборудования, включающей определение мест подвода материальных и энергетических потоков, обвязку оборудования, определение геометрических характеристик местонахождения оборудования, высотного расположения штуцеров, люков и обслуживающих площадок. В процессе выполнения работ по компоновке оборудования выдается задание механической части проекта на проработку конструкции, в ходе которой производится выбор конструкционного и материального оформления аппаратов (с учетом исходных данных, полученных от НИИ), осуществляются необходимые расчеты, изучаются возможности транспортировки и монтажа. После завершения рассматриваемого этапа возможна корректировка технологической схемы, что означает возврат к выполнению начальных этапов проектирования с использованием новой входной информации. Ес.ти же нет необходимости во внесении изменений в технологическую схему, то приступают к детальному механи- [c.19]

    В некоторых странах-членах СЭВ разрабатывается, кроме того, схема материальных и энергетических потоков, дающая наглядное, упрощенное представление о применяемых технологических процессах и операциях. [c.222]


    Энергетические показатели холодильной установки в целом отличаются от соответствующих характеристик холодильной машины (компрессора), так как в контуре хладоносителя и в системе водоохлаждения осуществляются необратимые процессы с затратой работы. Основные энергетические потоки холодильной установки при = —20 °С, = = 35°С и гр = 33 %  [c.183]

    Энергетическая эффективность цикла АХМ оценивается тепловым коэффициентом, равным отношению внешних энергетических потоков, характеризующих целевой эффект и все затраты в АХМ. Пренебрегая работой насоса (/ д ), получим  [c.190]

    Рассмотрим результаты использования метода динамического программирования при. построении оптимальной технологической схемы обычной РКС для разделения пятикомпонентной смеси пропан (Л) — изобутан (В) — н-бутан(С) — изопентан( )) — н-пен тан( ) при заданной нагрузке по величине потока исходной смеси. В этом случае в синтезируемой системе не учитывается возможность интегрального использования энергетических потоков. [c.299]

    На следующем этапе алгоритма с применением метода динамического программирования на основе найденных нижних пределов стоимости для каждой подзадачи разделения определяется первая РКС. Полученная схема РКС проверяется на два условия реализуемости решения задачи объединения энергетических потоков  [c.309]

    Значительные энергетические нагрузки крупнотоннажных агрегатов и появление в связи с этим в ХТС новых энерготехнологических элементов, таких, как котлы-утилизаторы, паровые турбины, абсорбционно-холодильные установки, требуют учета не только количественных, но и качественных характеристик энергетических потоков ХТС. Эта задача решается с позиций эксергетического анализа эффективности ХТС, использующего первый и второй законы термодинамики. [c.36]

    Детальное проектирование — состоит в проектировании всех аппаратов и установок, необходимых для производства продукции. Определяются конструкционные характеристики оборудования, взаимосвязи между отдельными стадиями производства, оцениваются возможности вторичного использования энергетических потоков, т. е. формируется окончательный вариант техно.логической схемы, удовлетворяющий требованиям замкнутости энергетических и материальных потоков. Два последних этапа проектирования тесно взаимосвязаны и часто выполняются как один, особенно при ограниченном количестве вариантов технологических схем. Дело в том, что проектный анализ в си.лу многовариантности задачи обычно выполняется [c.32]

    Уже на стадии выбора отдельных способов ведения процесса необходимо решать системные вопросы. Это означает, что проектирование отдельного аппарата не является самоцелью, а должно проводиться с учетом возможности исключения потерь массы и энергии. Чаще всего критерий оптимальности технологической схемы не является аддитивной функцией критериев отдельных ее элементов, а представляет собой сложную функцию параметров отдельных процессов и параметров, характеризующих взаимодействие между ними в пределах технологической схемы и с окружающей средой. Это связано прежде всего с утилизацией материальных и энергетических потоков. [c.79]

    Последний удобен для сравнения однотипных процессов химической технологии, так как неравенство КПД свидетельствует о возможностях усовершенствования одного из них за счет снижения необратимости или более эффективного использования продуктов. Применение эксергетического анализа весьма эффективно при исследовании также химико-технологических систем на основе балансов, имеющих большое количество источников и стоков энергии. С помощью такого подхода решаются задачи создания энергетически замкнутых химических производств, поскольку имеется возможность как оценки внутренних и внешних потерь, так и потенциалов энергетических потоков. Метод широко используется при расчете теплообменных систем [26, 27], сравнительной оценке различных способов разделения многокомпонентных смесей [28, 29], анализе химико-технологических систем [30, 31]. [c.105]

    Ограничения по материальным и энергетическим потокам выявляются в некоторой степени на этапе анализа свойств реагентов, продуктов реакции и разделения, тепло- и хладоагентов, исследования фазового и химического равновесия. Предварительный же расчет отдельных аппаратов на этапе выбора способа (или альтернативных способов) ведения процесса позволяет найти реальные (в рамках принятых допущений) нагрузки с учетом эффективности. При наличии этих данных схема может анализироваться без детального проектирования отдельных элементов для получения оптимальной технологической схемы. [c.144]


    Современный подход к решению задач химической технологии основан на принципах системного анализа и синтеза. Это означает, что химико-технологический процесс рассматривается как сложная система, состоящая из элементов различных уровней детализации, начиная от молекулярного и кончая отдельными процессами. Элементы системы, характеризующие процессы химического превращения, диффузионного, конвективного и турбулентного переноса вещества, т. е. явления на молекулярном уровне, а также явления коалесценции и диспергирования, распределения материальных и энергетических потоков и т. д., иерархически взаимосвязаны между собой в соответствии с физической реализацией процесса. Можно выделить четыре основных этапа системного исследования процесса. [c.3]

    При синтезе схемы, состоящей из цепочки колонн, снижение энергетических затрат возможно за счет рекуперации тепловых потоков внутри схемы. Вторичное использование энергетических потоков возможно благодаря различию температур кипения про- [c.140]

    Элементы ХТС функционируют в условиях внешних и внутренних возмущающих воздействий, которые стремятся противодействовать целенаправленному протеканию химико-технологических процессов. Внутренние возмущающие воздействия обусловлены изменением технологических параметров элементов и параметров технологических режимов функционирования ХТС (старение катализаторов, изменения давления и температуры внутри элементов и т. д.). Внешние воздействия на элементы ХТС обусловлены изменением физических параметров материальных и энергетических потоков (количество и состав сырья или исходных продуктов, изменение давления потоков, изменение температуры хладоагентов и т. д.). Эти возмущающие воздействия носят как детерминированный, так и стохастический характер, а период их изменения колеблется в большом диапазоне значений (от 1 до 10 сут). Для обеспечения выполнения элементами ХТС заданных целей функционирования в условиях возмущающих воздействий используют локальные системы автоматического управления химико-технологическими процессами. [c.15]

    Безотходное производство — такая организация производства, при которой отходы производства сведены к минимуму или полностью перерабатываются во вторичные материальные ресурсы. При безотходном производстве предполагается создание оптимальных технологических схем с замкнутым материальным и энергетическим потоками. Очевидно, что термин безотходное производство в некоторой степени условный, так как в реальных условиях нельзя полностью избавиться как от отходов, так и от влияния производства на окружающую среду. [c.9]

    Функционирование ХТС обычно представляют в виде взаимодействия отдельных элементарных технологических операторов (модулей), воздействующих на качественное и количественное изменение материальных и энергетических потоков в системе. Основные операторы в химической технологии оператор смешения, оператор химического превращения и оператор разделения. Кроме того, в системе участвуют вспомогательные операторы, осуществляющие нагрев (охлаждение), сжатие (расширение), изменение агрегатного состояния технологических потоков ХТС (рис. VII-1). [c.171]

    Отдельные технологические операторы (элементы, подсистем) ХТС, данная система и внешняя окружающая среда взаимодействуют в результате наличия между ними определенных технологических связей или технологических соединений. Каждой технологической связи (соединению) соответствует некоторый материальный или энергетический поток, называемый технологическим потоком. Исследование характера технологических связей ХТС должно показать, какое действие на качество функционирования системы оказывает способ соединения технологических операторов (элементов, подсистем) между собой. Эффективность функционирования ХТС можно повысить, улуч- [c.171]

    Выходные параметры характеризуют состояние системы и определяют условия выпуска продукции (Y). Эти параметры обязательно входят в критерий оптимизации. Выходными переменными ХТС служат физические параметры материальных и энергетических потоков химических продуктов на выходе ХТС. [c.181]

    Эталонный проект — совокупность технологических стадий с цикле сырьевые ресурсы — производство — потребление — ьторичные сырьевые ресурсы, обеспечивающих замкнутое движение материальных и энергетических потоков. При составлении эталонного проекта для отдельных видов химической продукции используют наиболее совершенные техпологпческие схемы получешш этой продукции и переработки отходов, при которых ие образуются вторичные отходы. [c.147]

    Техническая записка (ТЗ). В основных разделах технической записки содержатся сведения о принятом способе получения целевого продукта с характеристикой всех технологических узлов, о размерах материальных и энергетических потоков, о физических и химических свойствах веществ, применяемых в данном производстве, об оптимальных параметрах технологического режима и методах их стабилизации. На основании этих сведений и заданной производительности рассчитывают основное и вспомо-гательное оборудование. Результаты расчета помещают в раздел Расчет и выбор технологического оборудования . В дальнейшем ТЗ служит основным источником сведений для проектиро вания механико-технологической документации. [c.222]

    Колебания и вибрация. Интенсификация технологических процессов, протекающих в матнинах химических производств, непосредственно связана с ростом напряженности энергетических потоков от двигателя к рабочей машине, увеличением скоростей движения исполнительных органов, повышением требований к надежности машин. По этим причинам особое внимание уделяют изучению механических колебаний, под которыми понимают много-4  [c.44]

    Основные энергетические потоки пХМ следующие тепло греющего пара Qr- которое подводится я раствору в генераторе и является основной частью расхода энергии в установке тепло охлаждаемого объекта Qo. которое подвоцится к аммиаку в испарителе и характеризует полезный. эффект установки — ее холодопроизводительность тепло, которое отиодится в конденсаторе, абсорбере и дефлагматоре охлаждающей водой и в конечном счете передается атмосферному воздуху в вентиляторных градирнях. [c.185]

    При исследовании процессов функционирования ХТС каждый элемент системы рассматривают как технологический оператор, качественно и (или) количественно преобразующий физические параметры входных материальных и энергетических технологических потоков х , х , Хп в физические параметры выходных материальных и энергетических потоков .. ., у (рис. 1-2). [c.20]

    Основными переменными, характеризующими материальные и энергетические потоки реакционного процесса в яроточном реакторе с мешалкой, являются о.о — объемный расход входного потока, содержащего -ый компонент Си —концентрация 1-го компонента во входном потоке ti o ii,о — температура входного потока Шо Vi объемный расход хладагента /ю —температура хладагента на входе Ит — объемный расход теплоносителя то — температура теплоносителя на входе Qnp — скорость подвода тепла (вхрдные переменные) о —объемный расход реакционной массы С/— концентрация -го компонента в выходном потоке V, /г — температура реакционной массы h — температура хладагента на выходе It—температура теплоносителя на выходе Qot — скорость оттока тепла в окружающую среду (выходные переменные). [c.65]

    Таким образом, характер интеграции потоков энергии меняется в зависимости от выбранной схемы системы ксьлонн разделения. При этом на основе применения второго закона термодинамики и анализа ранжированного списка компонентов оказывается возможным исключить определенные связи энергетических потоков. [c.306]

    Ранее на оонове определенного списка всех фракций, образуемых при разделении исходной смеси, рассчитывались температуры конденсации и кипения для соответствующих потоков. Полученные при этом величины соответствуют оптимальной стоимости реализации РКС. определяемой методом динамического программирования. После нахождения этих температур некоторые реализуемые варианты объединения энергопотоков из матрицы (см. рис. УП-И) могут быть исключены на основе второго закона термодинамики. Далее определяется стоимость каждой из подзадач разделения при всех возможных вариантах интеграции энергетических потоков в РКС. На следующем этапе определяется стоимость реализации системы разделения с учетом капитальных и энергетических затрат. Все возможные схемы РКС ранжируются по величине этой [c.308]

Рис. VII-II. Матрица предварительных возможных варнавтов объединения энергетических потоков при построении структурных схем ректификационных систем для разделения пяти-компонентной смеси AB DE. Рис. VII-II. Матрица предварительных возможных варнавтов <a href="/info/1791465">объединения энергетических</a> потоков при <a href="/info/1476889">построении структурных</a> <a href="/info/28472">схем ректификационных</a> систем для разделения пяти-компонентной смеси AB DE.
    Современные крупнотоннажные химические производства отличаются многостадийностью получения целевых продуктов, сложностью технологических решений, высокой энергонасыщенностью и материалоемкостью, большой протяженностью и сложностью трубопроводных и кабельных коммуникаций, глубокой функциональной взаимозависимостью по материальным и энергетическим потокам отдельных стадий и отделений. В их состав, как правило, входят отделения подготовки сырья, химического превращения, выделения целевых продуктов и ряд вспомогательных систем, обеспечивающих бесперебойное протекание основного технологического процесса (энерго- и холодо-снабжения, приготовления и регенерации катализаторов, обезвреживания и удаления или переработки отходов производства, отопления и вентиляции, оборотного водоснабжения, комприми-рования, механической службы, автоматического управления и т. п.). [c.7]

    И технических решений) появляются итерационные циклы, охватывающие обратными связями отдельные этапы. Кроме того, в технологической схеме имеются рециклические материальные и энергетические потоки, параметры которых при декомпозиционной стратегии проектирования необходимо уточнять итерационно. Поэтому проектирование оптимальных технологических схем заключается в многократном расчете отдельных элементов и их комплексов с целью выбора наилучшего технического решения и уточнения параметров потоков. В связи с этим (как отмечалось в предыдущем разделе) моделирующие системы строятся как многошаговые с возвратом на предыдущие шаги в зависимости от результатов анализа получаемой промежуточной информации. [c.425]

    В связи с этим в химической технологии возникли принципиально новые научно-технические задачи 1) обеспечение работы химических производств и агрегатов в оптимальном режиме по экономическим и энерго-технологическим показателям 2) передача функций управления самому агрегату через организацию материальных и энергетических потоков в агрегате, т. е. агрегат должен быть кибернетически организован 3) обеспечение надежности функционирования химического производства и агрегата 4) проблема оптимальной предельной мощности агрегата как энерго-технологи-ческого комплекса 5) создание резервов последующей переработки промежуточных продуктов и их хранение. [c.9]

    Выходными переменными ХТС служат физические параметры материальных и энергетических потоков химических продуктов на выходе ХТС. Эти параметры подразде.ляют па параметры состояния (массовый расход, концентрации химических компонентов, давление, температура, энтальпия и т. д.) и параметры свойств потоков (теплоемкость, вязкость, плотность и т. д.). Состояние системы зависит от цараметров ХТС, параметров технологического режима элементов и от воздействия на ХТС входных материальных и энергетических потоков сырья или исходных продуктов. [c.12]

    Символические математические модели реальной ХТС представляют собой совокупность математических соотношений в виде формул, уравнений, операторов, логических условий или неравенств, которые определяют характеристики состояния ХТС (физические параметры состояния материальных и энергетических потоков химических продуктов на выходе системы) в зависимости от конструкционных и технологических параметров ХТС, параметров состояния элементов системы и от параметров входных технологических потоков системы. Такая модель является результатом формализации химико-технологических процессов, происходящих в системе, т. е. результатом создания четкого формальноматематического описания процесса функционирования ХТС с необходимой степенью приближения к действительности. [c.19]

    Взаимодействие отдельных технологических операторов (элементов, подсистем) ХТС, данной системы и внешней окружающей среды, без которого не может происходить целенаправлепное функционирование ХТС в целом, осуществляется благодаря наличию между ними определенных технологических связей или технологических соединений. Каждой технологической связи (соединению) соответствует некоторый материальный или энергетический поток, называемый технологическим потоком. Исследование характера технологических связей ХТС должно показать, какое действие на качество функционирования системы оказывает способ соединения технологических операторов (элементов, подсистем) между собой. Эффективность функционирования ХТС можно повысить 1) путем улучшения показателей качества функционирования основных технологических операторов (элементов) и изменения технологических связей между существующими в системе технологическими операторами 2) введением дополнительных вспо- [c.22]

    Принимая во внимание тенденцию к увеличеиию единичной мощности агрегатов ХТС, отметим, что все большую роль в экономике химического предприятия играет энергетика. Значительные энергетические нагрузки и появление в связи с этим в ХТС новых элементов, таких как котлы-утилизаторы, паровые турбины, абсорбционно-холодильные установки, требуют учета не только количественных, но и качественных характеристик работоспособности энергетических потоков ХТС. Эта задача решается с позиций эксергетического анализа с использованием как 1-го, так и 2-го законов термодинамики. Совмещение технико-экономического анализа с эксергетическим принципом привело к появлению новой термоэкономической концепции в оценке эффективности ХТС. С позиций термоэкономики эффективность ХТС определяется на основе экономической оценки преобразования потоков эксергии в виде термоэкопоми-ческого критерия оптимизации. [c.336]

    Вследствие создания новых высокоинтенсивных безотходных технологических процессов, агрегатов большой единичной мощности, возникли принципиально новые научно-технические задачи, которые не приходилось ранее решать 1) организация работы химических производств и агрегатов в оптимальных режимах по экономическим, энерготехнологическим и экологическим показателям 2) передача функций управления самому агрегату через оптимальную организацию материальных и энергетических потоков в агрегате, т. е. структура агрегата организуется кибернетически 3) обеспечение надежности функционирования агрегата. [c.13]


Смотреть страницы где упоминается термин Энергетический поток: [c.16]    [c.9]    [c.32]    [c.66]    [c.308]    [c.309]    [c.309]    [c.33]    [c.74]    [c.142]    [c.443]    [c.188]   
Техника и практика спектроскопии (1976) -- [ c.10 ]

Техника и практика спектроскопии (1972) -- [ c.10 ]




ПОИСК







© 2025 chem21.info Реклама на сайте