Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

сходство с митохондриями

Рис. 2-11. Правдоподобная гипотеза о возникновении митохондрий в ходе эволюции. Эта гипотеза основана на поразительном сходстве многих биохимических и генетических свойств у бактерий и митохондрий эукариотических клеток. В процессе эволюции эукариотических клеток между клеткой-хозяином и проникшей в ее цитоплазму бактерией установились взаимовыгодные симбиотические отношения. В конечном счете эти цитоплазматические бактерии превратились в митохондрии. Рис. 2-11. Правдоподобная гипотеза о возникновении митохондрий в <a href="/info/1338657">ходе эволюции</a>. Эта <a href="/info/1635741">гипотеза основана</a> на поразительном сходстве многих биохимических и <a href="/info/1386315">генетических свойств</a> у бактерий и митохондрий эукариотических клеток. В <a href="/info/1874633">процессе эволюции</a> эукариотических клеток <a href="/info/510275">между клеткой</a>-хозяином и проникшей в ее <a href="/info/1282055">цитоплазму бактерией</a> установились взаимовыгодные <a href="/info/103572">симбиотические отношения</a>. В конечном счете эти цитоплазматические бактерии превратились в митохондрии.

    Сходство систем переноса электронов в митохондриях и хлоропластах стало еще более очевидным, когда оказалось, что для синтеза АТР необходим сопрягающий фактор хлоропластов F , сходный по свойствам с митохондриальным белком Fi (гл. 10, разд. Д, 8). Как и сопрягающий фактор митохондрий, фактор F, состоит из субъединиц пяти разных типов [107, 108]. Подобно митохондриям, хлоропласты (на свету) также перекачивают протоны через мембраны. Однако при этом протоны накапливаются внутри тилакоидов, тогда как в митохондриях они выводятся наружу. Сопрягающий фактор Fi находится на наружной поверхности тилакоидов, обращенной в сторону стромального ма  [c.49]

    Эукариотические клетки высших растений (рис. 2-21) несколько отличаются от клеток высших животных, несмотря на сходство их основных особенностей. Пожалуй, наиболее явное различие состоит в том, что большинство растительных клеток содержит пластиды. Пластиды-это расположенные в цитоплазме специализированные органеллы, окруженные двумя мембранами. К самым типичным пластидам, характерным для всех клеток зеленых растений, относятся хлоропласты (рис. 2-22). Подобно митохондриям хлоропласты можно рассматри- [c.46]

    В чем сходство между митохондриями и хлоропластами  [c.76]

    Лучше всего изучен среди цитохромов цитохром с. Это небольшой белок (мол. масса 12 500) с железопорфириновой группой, ковалентно присоединенной к единственной полипептидной цепи (разд. 8.4). Установлена аминокислотная последовательность белка (рис. 6-14) и выяснены все детали трехмерной структуры его молекул (рис. 8-5). Цитохром с, легко экстрагируемый из митохондрий, был получен в кристаллической форме из многих источников. Ранее мы уже упоминали (рис. 6-14), что цитохром с-один из белков, возникших на заре эволюции. На это указывает сходство многих участков его аминокислотной последовательности у всех эукариот микроорганизмов, растений и животных. [c.521]

    Для аэробных бактерий также характерен процесс переноса электронов от NAD-зависимых субстратов на кислород и сопряженное с этим процессом фосфорилирование цитозольного ADP до АТР. Дегидрогеназы находятся в цитозоле бактериальной клетки, а переносчики электронов дыхательной цепи-в ее плазматической мембране, где локализуются также и механизмы сопряжения, генерирующие АТР. При переносе электронов бактериальные клетки тоже выкачивают ионы Н наружу. Это сходство в организации цепей переноса электронов (рис. 17-23) у бактерий и митохондрий служит дополнительным доводом в пользу той точки зрения, согласно которой [c.535]

Рис. 17-23. Сходство между митохондриями (А) и бактериями (Б) проявляется в организации цепей переноса электронов, в способности откачивать ионы Н и в наличии р<,р1-АТРазы. Рис. 17-23. <a href="/info/1650608">Сходство между</a> митохондриями (А) и бактериями (Б) проявляется в организации <a href="/info/511072">цепей переноса электронов</a>, в способности откачивать ионы Н и в наличии р<,р1-АТРазы.

    Вслед за ядром в клетке были открыты (около 1900 г.) так называемые крупные гранулы, или митохондрии. По своим размерам эти клеточные органеллы также стоят на втором месте непосредственно за ядром. Митохондрии, окрашенные такими красителями, как янус зеленый, находятся почти на пределе разрешения обычного светового микроскопа. В фазовоконтрастном микроскопе их различить легко. Однако подлинных успехов в изучении структуры митохондрии удалось добиться только в последние 15 лет после появления электронного микроскопа. Число митохондрий, их размеры и форма могут в разных клетках сильно варьировать, но их ультраструктура во всех случаях в достаточной степени сходна и вместе с тем отличается от ультраструктуры других органелл настолько, что в большинстве случаев однозначная идентификация этих частиц не составляет большого труда. Это фундаментальное сходство всех митохондрий независимо от того, какому организму они принадлежат — человеку, грибу или простейшему. Общее число митохондрий в клетке колеблется примерно от десятка у дрожжей до нескольких сотен в животной клетке отдельная митохондрия напоминает по форме эллипсоид вращения, длинная и короткая оси которого равны соответственно 1,5 и 0,5 мк, а средний объем составляет около [c.243]

    Репликация, транскрипция и трансляция геномов органелл. В хлоропластах и митохондриях ДНК представлена небольшими двухцепочечными молекулами, обычно кольцевыми, и не связана с гистонами. Таким образом, генетическая информация органелл содержится в структурах, весьма сходных с хромосомами прокариот, хотя и значительно меньших по размерам. В каждой органелле имеется множество копий ДНК (до 40—50 в некоторых хлоропластах). Кроме того, хлоропласты и митохондрии содержат аппарат транскрипции и трансляции, включая специфические для органелл рибосомы, которые меньше цитоплазматических 808-рибосом и близки по величине к 708-рибосо-мам прокариот. Синтез белка в органеллах ингибируется хлорам нико-лом и некоторыми другими антибиотиками, подавляющими этот процесс и у прокариот, но не влияющими на синтез белка в цитоплазме эукариотической клетки. Таким образом, хлоропласты и митохондрии обнаруживают ряд важных черт фундаментального сходства с прокариотическими клетками. Митохондрии обладают еще одной особенностью, характерной для клеток, но не для других компонентов клетки они образуются путем деления предсуществующих органелл. Это продемонстрировано также в отношении многих типов хлоропластов у водорослей. У высших растений зрелые хлоропласты развиваются из более простых структур — пропластид на стадии пропластид и происходит воспроизводство этих органелл. [c.49]

    Сходство риккетсий с митохондриями было обнаружено в других, весьма интересных опытах. Мы изучали отношение риккетсий к коферментам — младшим партнерам ферментов, в помощи которых многие из этих последних нуждаются, чтобы функционировать в качестве [c.151]

    Сходство между митохондриями и риккетсиями как в отношении их биохимических особенностей, так и в отношении формы дает возможность предположить, что риккетсии могли произойти из митохондрий. Но это, по-видимому, сомнительно. Известно, что в риккетсиях имеется дезоксирибонуклеиновая кислота, которая в митохондриях не обнаружена. Митохондрии могут окислять многие вещества, в частности жирные кислоты, которые риккетсии тифа окислять, по-видимому, не способны. [c.153]

    Процессы трансформации энергии при электронном транспорте в мембранах некоторых бактерий, митохондрий, хлоропластов и хроматофоров обладают фундаментальным сходством. Во всех этих системах происходит использование энергии электронного потока для синтеза молекул АТФ. Механизмы этого процесса, однако, во многом непонятны. [c.206]

Рис. 68. Сходство и различия в организации митохондрий, дышащих бактерий, фотосинтезирующих бактерий и тилакоида хлоропласта Рис. 68. Сходство и различия в <a href="/info/1350649">организации митохондрий</a>, дышащих бактерий, <a href="/info/97672">фотосинтезирующих бактерий</a> и тилакоида хлоропласта
    Но и это еще не все. Существует особая замечательная группа бактерий — цианобактерии (раньше их называли сине-зелеными водорослями). Это древнейшие обитатели Земли, обладающие рядом особенностей. Они способны к фотосинтезу, могут сами усваивать атмосферный азот и т. д. Среди цианобактерий есть многоклеточные существа, похожие на дождевого червя, у которого каждый членик — отдельная клетка. Эти клетки имеют немного разные функции и соединены межклеточными отверстиями. Сходство с червем усиливается тем, что такие бактерии умеют ползать. Они обладают положительным фототаксисом, т. е. ползут к свету. Сопротивление мембраны у них, так же как у большинства других бактерий и у митохондрий, очень велико, а длина — всего несколько миллиметров. [c.274]

    На рис. 7-40 показаны черты сходства и различия в строении митохондрий и хлоропластов. В обш,ем виде хлоропласт можно представить как сильно увеличенную митохондрию, кристы которой образовали в матриксе цепочки связанных между собой субмитохондриальных частии. В хлоропластах сферическая часть АТР-синтетазы, где образуется АТР, выступает из мембраны тилакоида в область стромы, точно так же как в митохондриях она выступает из внутренней мембраны в сторону матрикса (см. рис. 7-51). [c.462]


    Особые РНК-полимеразы обеспечивают транскрипцию клеточных органелл эукариот — хлоропластов и митохондрий. В составе хлоропластной ДНК обнаружены гены, гомологичные генам, кодирующим а-, - и -субъединицы РНК-полимеразы Е. oli. Это, а также сходство нуклеотидной последовательности промоторов бактерий и хлоропластов свидетельствует о том, что РНК-полимераза хлоропластов должна быть сходна с РНК-полимеразой бактерий. РНК-полимеразы митохондрий состоят, по-видимому, всего из одной субъединицы, подобно РНК-полимеразам, кодируемым некоторыми бактериофагами, такими, как ТЗ и Т7. РНК-полимераза митохондрий дрожжей сходна с РНК-полнмеразами этих фагов по аминокислотной последовательности. Ген, кодирующий митохондриальную РНК-полимеразу, располагается в ядре. [c.136]

    Несмотря на небольшое число белков, кодируемых генами митохондрий и хлоропластов, эти органеллы осуществляют репликацию и транскрипцию своей ДНК и белковый синтез. Эти процессы протекают в матриксе митохондрий и строме хлоропластов. Хотя белки, участвующие во всех этих процессах, специфичны для органелл. большая часть их кодируется ядерным геномом (разд. 7.5.17). Это тем более удивительно в связи с тем, что весь аппарат белкового синтеза в органеллах сходен с бактериальным, а не с эукариотическим. У хлоропластов это сходство особенно велико  [c.488]

    Рибосомы хлоропластов очень сходны с бактериальными рибосомами, тогда как рибосомы митохондрий несколько больше отличаются от последних поэтому проследить происхождение митохондрий сложнее. Однако сходство между белками дает основание предполагать, что те. и другие органеллы произошли от бактерий, вступивших в устойчивый симбиоз (в качестве эндосимбионтов) с какими-то примитивными эукариотическими клетками как полагают, митохондриям дали начало пурпурные бактерии, а хлоропластам (позднее) - цианобактерии или близкие к ним организмы. Хотя многие гены этих древних бактерий все еще используются для синтеза белков органеллы, большая их часть по неясным причинам включилась в ядерный геном, где они кодируют ферменты, которые сходны с бактериальными и синтезируются на рибосомах в цитозоле, а затем переходят в органеллу. [c.502]

    Как уже обсуждалось в гл. 7, митохондрии и хлоропласты отличаются от других окруженных мембраной органелл тем, что имеют свои собственные геномы. Природа )тих геномов и близкое сходство белков митохондрий и хлоропластов с белками некоторых современных бактерий подтверждает гипотезу о том, что эти органеллы произошли от бактерий, которые были захвачены другими клетками и первое время существовали в симбиозе с ними (см. разд. 7.5.16). Согласно гипотетической схеме, приведенной на рис. 8-4, А, внутренняя мембрана митохондрий и хлоропластов соответствует исходной плазматической мембране бактерий, а матрикс этих органелл произошел из бактериальной цитоплазмы. Таким образом, эти две органеллы оказались изолированы от путей транспорта, связывающих полости большинства органелл друг с другом и с внеклеточным пространством. [c.9]

    Если хлоропласты полифилетичны, концепция Стэниера о том, что приобретение митохондрий произошло после приобретения хлоропластов, а не до него, наталкивается на определенную трудность, которая заключается в чрезвычайно большом сходстве митохондрий у всех эукариотов. Как уже говорилось, считают, что митохондрии монофилетичны. Следовательно, такое сходство было бы невозможным, если бы они проходили свою эволюцию во множестве разных фотосинтезирующих хозяев. [c.197]

    Эти механохимические процессы сводятся к превращению химической энергии в механическую работу. Имеется далеко идущее сходство АТФ-азной активности митохондриальных мембран и актом иозиновой сократительной системы скелетных мышц. Сходны их механохимические свойства — сокращение под действием АТФ. Можно было думать, что в мембранах митохондрий присутствуют сократительные белки, подобные актомнозину. Эта гипотеза была подтверждена — сократительный белок удалось выделить из митохондрий. Показано, что сократительные белки участвуют в митохондриальной механохимии, но оказалось, что здесь играет существенную роль и липид мембран — фосфатидилинозитол. [c.431]

    Снижение А1 з должно приводить к нарушению сопряя5ения окисления и фосфорилирования. К этому сводится действие разобщителей сопряжения. Таковыми являются динитрофенол (ДНФ) и другие вещества. ДНФ, по-видимому, действует как переносчик протонов. Если схема Митчелла верна, то любые слабые кислоты и основания должны оказывать разобщающее действие. Разобщители действительно повышают протонную проводимость ММ. Выяв.чено далеко идущее сходство искусственных фосфолипидных мембран с внутренними мембранами митохондрий. [c.437]

    Электроны с восстановленных переносчиков (НАД Нз, НАДФ Нз, ФАД Нз), образующихся при функционировании ЦТК или окислительного пентозофосфатного цикла, поступают в дыхательную цепь, где проходят через ряд этапов, опускаясь постепенно на все более низкие энергетические уровни, и акцептируются соединением, служащим конечным акцептором электронов. Перенос электронов приводит к значительному изменению свободной энергии в системе. В наиболее соверщенном виде и единообразии дыхательная цепь предстает у эукариот, где она локализована во внутренней мембране митохондрий. У эубактерий дыхательные цепи поражают разнообразием своей конкретной организации при сохранении принципиального сходства в строении и функционировании. [c.360]

    Каждый из нас легко отличит растение от зверя или птицы. Обычно нетрудно даже решить, какому организму-растительному или животному-принадлежит отдельная клетка, хотя здесь могут быть и проблематичные случаи. Но по мере более глубокого проникновения внутрь клетки, при исследовании ее цитоплазмы, органелл и, наконец, индивидуальных химических компонентов на первый план начинают выступать уже Не различия, а черты сходства между двумя царствами живой природы. Лишь с помошью весьма тонких методов можно отличить растительные митохондрии, ядра и рибосомы от соответствующих животных органелл, а многие компоненты растительных и животных клеток, такие, например, как микротрубочки, практически неразличимы. Специфика растительной и животной жизни проявляется не в таких фундаментальных особенностях молекулярной организации живого, как репликация ДНК, биосинтез белков, процессы фосфорилирования в митохондриях нли конструкция клеточных мембран,-скорее оиа связана с более спе-циажзированкыми функциями клеток и тканей Большая часть различий между обоими царствами возникла в ходе эволюционной дивергенции, для которой отправными точками послужили два фундаментальных события приобретение способности связывать углекислоту в процессе фотосинтеза (см. гл. 9) и появление жесткой клеточной стенки у предков современных растений. Отдаленные последствия второго из указанных событий и будут предметом обсуждения в этой главе. [c.160]

    Фотосинтетический перенос электронов и фотофосфорилирование в хлоропластах во многом сходны с переносом электронов и окислительным фосфорилированием в митохондриях. Это сходство проявляется в следующем 1) реакционные центры, переносчики электронов и ферменты, участвующие в образовании АТР, находятся в мембране тилакоидов 2) необходимым условием фотофосфорилирования является целост- [c.699]

    После гомогенизации ткани митохондрии легко отделяются от клеточных обломков, а также от других цитоплазматических включений при помощи дифференциального центрифугирования. Как показывает опыт работы с митохондриями животных, все операции по выделению нужно проводить так, чтобы изолированный материал удовлетворял определенным жестким требованиям [13, 19]. Эти требования следующие 1) высокая степень контроля дыхания со стороны АДФ 2) удовлетворительное отношение Р О, соответствующее общепринятым пределам этой величины для различных субстратов окисления 3) высокое отношение пиридинну-клеотидов к цитохромам 4) сходство ультраструктуры изолированных митохондрий со структурой митохондрий интактной клетки. Общая схема метода выделения растительных митохондрий, представляющего собой модификацию методики Вискича и Боннера [96], приведена на фиг. 23. [c.58]

    Действительно ли микротрубочки имеют прямое отношение к синтезу микрофибрилл целлюлозы, неизвестно, но сходство ориентации этих элементов заставляет призадуматься. Эльбейну и сотр. [6] удалось синтезировать целлюлозу с помощью фермента, локализованного в частицах, оседающих при центрифугировании с фракцией митохондрий. Это свидетельствует о том, что целлюлоза образуется в цитоплазме и притом, по-видимому, не в микротрубочках, хотя и эта возможность не может быть полностью отброшена. Аппарат Гольджи также следует принимать во внимание как возможное место синтеза полисахаридов [20]. [c.90]

    Хотя окисление пирувата до СОг и ацетил-КоА и не является реакцией цикла Кребса, однако оно локализовано в митохондриях, и большая часть образующегося при этом ацетил-КоА сразу же включается в цикл. Кроме того, имеется большое сходство между реакциями, катализируемыми пируватдегидрогена-зной и а-кетоглутаратдегидрогеназной системами. Эти реакции следующие  [c.118]

    Бок и Кридль высказали даже предположение, что на одном из этапов переноса электронов, имеющем место в процессе действия дегидрогеназы, совершается маятникообразное движение одного из коферментов, который связан с носителем эластической связью. Вращательное движение кофермента обеспечивает последовательность соударений с функциональными группами всего комплекса. Не имея возможности вдаваться в детальное рассмотрение этой гипотезы, все же подчеркнем, что изучение митохондрий скорее наводит на мысль об аналогии между этой частицей и часовым механизмом, чем на мысль о сходстве биохимических машин с простым коллоидным раствором. [c.185]

    В ферментативных реакциях самые убедительные доказательства участия механизма с координированным ионом гидроксила получены для карбоангидразы. По данным инфракрасной спектроскопии, молекула субстрата (СО2) не связана с атомом цинка, но расположена сравнительно близко от него, чтобы быть атакованной координированным гидроксильным ионом [82] (гл. 16, разд. 7). С этим механизмом согласуется зависимость активности от pH и природы разнообразных ингибиторов [ 114, 115]. Селвин [112] предложил похожий механизм для АТФ-азы митохондрий, участвующей в окислительном фосфорилировании. Он основывался на сходстве рН-зависимостей ферментативной реакции и упомянутого выще ускорения гидролиза АТФ ионами лантанидов. Однако величина р/Са для АТФ-азной реакции (примерно 7) была намного выще р/Са воды в комплексе с активирующими двухзарядными ионами. Для наилучщих активаторов М 2+, Со2+ и Ъг эта величина примерно равна соответственно 12, ---9 и 9 [87]. Селвин [112] предполагает, что кислотность комплексов может увеличиваться под влиянием положительно заряженных групп фермента, расположенных поблизости. Надо признать, что расхождение в 5 единиц pH для Mg2+ слишком велико, чтобы его можно было объяснить таким образом (необходимая для этого энергия электростатичеокого взаимодействия должна составлять примерно 7 ккал/моль). Выще говорилось о том, что ионизация свободной молекулы воды предложена в качестве объяснения перехода при pH 8,5, наблюдаемого для 2п +-содержащей щелочной фосфатазы. При этом увеличение pH приводило к уменьщению активности фермента. В силу этого можно считать, что механизм с координированным гидроксильным ионом вряд ли играет существенную роль при ферментативном гидролизе фосфатов. [c.651]

    Весь ли азот аминокислот, поступаюший через глутамат на синтез мочевины, должен высвобождаться в митохондриях в виде аммиака Если не весь, то какая его часть Какова судьба остальной части В чем принщшиальное сходство между щ клом трикарбоновых кислот и циклом мочевины Какие вещества при синтезе мочевины выступают в той же роли, что и ЩУК в ЦТК  [c.267]

    Процессы трансформации энергии при дыхании и фотосинтезе включают в себя в качестве необходимого элемента перенос электронов по электрон-транспортной цепи (ЭТЦ), образованной встроенными в мембрану окислительновосстановительными ферментами. ЭТЦ митохондрий, хлоропластов и хромато-форов фотосинтезирующих бактерий имеют большое сходство как на уровне отдельных переносчиков электронов, так и на уровне отдельных комплексов молекул-переносчиков. Одна полная цепь переноса электрона состоит из нескольких отдельных комплексов. Эти комплексы — естественные субъединицы цепи, в полной мере способные осуществлять перенос электрона. Кроме того, в ЭТЦ имеются участки, на которых перенос электрона происходит с помощью отдельных переносчиков. Соответственно при математическом описании процессов следует учитывать различия в организации отдельных участков электронного транспорта.  [c.79]

    На рис. 1-22 показано эволюционное происхождение эукариот в соответствии с симбиотической теорией Следует отметить, что митохондрии и хлоропласты, проявляя определенное сходство с современными аэробными бактериями и цианобактериями, в то же время во многих отношениях отличаются от них. Например, количество ДНК в этих органеллах очень мало, большинство составляющих их молекул синтезируется вне органелл и лишь затем в них фанспортируется. Если считать, что митохондрии и хлоропласты действительно возникли из симбиотических бактерий, то следует признать, что они претерпели значительные эволюционные изменения и стали весьма зависимыми от своих хозяев. [c.33]

    Какой же тип бактерий дал начало митохондриям Расшифровка полной аминокислотной последовательности и трехмерный рентгеноструктурный анализ цитохромов типа с из различных бактерий выявили близкое сходство этих белков между собой и с цитохромом с дыхательной цепи митохондрий растительных и животных клеток. На основе этих и других биохимических данных было предложено эволюционное древо, изображенное на рис. 7-62. Но-видимому, митохондрии произошли 01 особого рода пурпурных фотосинтезирующих бактерий, которые утратили способность к фотосинтезу и сохранили только дыхательную цепь. Однако до сих пор не ясно, все ли митохондрии (так же как и хлоропласты) возникли в результате одного единственного случая эндосимбиоза. Хотя митохондрии простейших имеют отчетливо выраженные прокариотические свойства, некоторые из них достаточно отличаются от митохондрий растительных и животных клеток, чтобы можно было предположить их независимое происхождение. [c.500]

    Каждый из нас легко отличит растение от зверя или нтицы. Более того, обычно нетрудно определить, какому организму - растительному или животному - принадлежит отдельная клетка, хотя иногда эта задача ставит в тупик. При внимательном исследовании клетки - ее цитоплазмы, органелл и, наконец, отдельных химических компонентов на первый план начинают выступать уже не различия, а черты сходства между двумя царствами живой природы. Лишь с помощью весьма тонких методов можно отличить митохондрии, ядра, рибосомы или составные части цитоскелета растительных клеток от соответствующих органелл клеток животных. Специфика растительной и животной жизни проявляется не в таких фундаментальных особенностях молекулярной организации живого, как репликация ДПК, биосинтез белков, окислительное фосфорилирование в митохондриях или конструкция клеточных мембран, а в более специализированных функциях клеток и гканей. [c.382]

    Они необходимы для функционирования гидроксилаз, действующих на биолипиды, а также на лекарственные препараты [2051]. Сходные гемопротеиды обнаружены у бактерий, например у псевдомонад [2051]. Но особое значение, по-видимому, имеет тот факт, что, согласно результатам анализа последовательности аминокислот в белковой части цитохрома эндоплазматической сети клеток млекопитающих, т. е. микросом, между этим цитохромом и митохондриальным цитохромам с имеется лишь отдаленное сходство [1221]. Если эти внемитохондриальные цитохромы произошли в эволюции от клеточной мембраны, то исходным хозяином митохондрий была бы фотосинтезирующая клетка 14, Д 19, Е). [c.186]

    Общее количество ДНК в митохондриях высших организмов примерно одинаково, но состав ее различен. Это не противоречит монофилетическому происхождению митохондрий, если предположить, что разные организмы утратили разные части митохондриальной ДНК. Ввиду основного сходства всех митохондрий их полифилетическое происхождение вряд ли возможно 19, Д). [c.186]


Смотреть страницы где упоминается термин сходство с митохондриями: [c.136]    [c.161]    [c.245]    [c.947]    [c.261]    [c.126]    [c.252]    [c.31]    [c.476]    [c.144]    [c.188]    [c.190]   
Молекулярная биология клетки Том5 (1987) -- [ c.35 , c.36 , c.37 ]




ПОИСК





Смотрите так же термины и статьи:

сходство



© 2025 chem21.info Реклама на сайте