Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетил-КоА жирных кислот

    Полученный спирт-сырец, с целью дальнейшей очистки, подвергают дробной перегонке. Первый погон содержит легколетучие ацетальдегид и ацетали, главная фракция представляет собой 90—95%-ный этиловый спирт, а в последней фракции находятся спирты сивушного масла , получающиеся при брожении из аминокислот и состоящие в основном из двух изомерных амиловых спиртов, а также изобутило-вого спирта и небольших количеств нормального пропилового спирта. Кроме того, сивушное масло содержит незначительное количество высших спиртов и жирных кислот, их эфиров и фурфурола. [c.125]


    Уксусная кислота (СНзСООН) образуется при уксуснокислом брожении разбавленных водных растворов этанола. В метаболических процессах участвует как сама кислота, так и ее соли. Особенно важно присутствие уксусной кислоты в форме ацетила в ацетилкоферменте А (разд. 7.5.1.2), поскольку это соединение является ключевым промежуточным продуктом метаболических процессов и исходным веществом при биосинтезе всевозможных природных продуктов, как, например, жирных кислот, терпеноидов, растительных красителей и многих других. [c.183]

    Вакиль (1938) по казал, что малонил-КоА участвует в биосинтезе жирных кислот, вероятно, за счет конденсации с ацетил-КоА, сопровождающейся отщеплением одного моля Ко,Л и образованием Сз-про-межуточных продуктов, которые восстановительно декарбоксилируются до бутанон-КоА. [c.732]

    В ЦТК сжигаются не только углеводы, но и жирные кислоты (после предварительной деградации до ацетил-КоА), а также многие аминокислоты (после удаления аминогруппы в реакциях дезаминирования или переаминирования). [c.207]

    Первая стадия синтеза жирных кислот является в то же время одной иа последних стадий распада углеводов, поскольку ацетилкофермент А (ацетил-КоА), исходный продукт в биосинтезе жирных кислот, образуется в процессе метаболизма углеводов. [c.137]

    Для обеспечения клеток максимальным количеством энергии необходимо, чтобы отщепляемые от жирных кислот ацетильные остатки, содержащие два атома углерода, были полностью окислены до двуокиси углерода. Химическое окисление ацетильной группы осуществляется нелегко, и, вероятно, поэтому природа изобрела элегантный каталитический цикл, называемый циклом трикарбоновых кислот (а также циклом лимонной кислоты, или циклом Кребса). На рис. 7-1 этот цикл изображен в правом нижнем углу. Содержащая четыре атома углерода щавелевоуксусная кислота (оксалоацетат) конденсируется с ацетильной группой молекулы ацетил-СоА с образованием лимонной кислоты, молекула которой построена из шести атомов углерода. Затем в ходе дальнейших реакций цикла происходит удаление двух атомов углерода [c.84]

    Расходуя питательные вещества для получения энергии, клетки в то же самое время непрерывно создают новый материал. На рис. 7-1 штриховыми линиями показаны те метаболические пути, с помощью которых эти процессы синтеза осуществляются. Если мы вернемся к правой части рис. 7-1, то увидим, что путь синтеза жирных кислот начинается с ацетил-СоА и представляет собой обращение пути расщепления жирных кислот. Однако для синтеза необходимы АТР как источник энергии [c.86]


    Большая часть жирных кислот, содержащихся в тканях нашего организма, а также в растительных жирах, имеет неразветвленные цепи. Однако в липидах некоторых микроорганизмов и в углеродных цепях ВОСКОВ, покрывающих поверхности растений, встречаются точки ветвления, образованные обычно метильной группой. Если ветвлений немного и все они приходятся только на четные положения, т. е. на углеродные атомы 2, 4 и т. д., то процесс р-окисления протекает нормально. При распаде цепи, помимо ацетил-СоА, образуется также и пропио-нил-СоА. С другой стороны, если метильные группы находятся в положениях 3, 5 II т. д., то процесс р-окисления блокируется на стадии Ь (рпс. 9-1). [c.310]

    Для завершения окисления жирных кислот ацетильные остатки молекулы ацетил-СоА, образовавшиеся в результате реакций р-окисления, должны быть окислены до двуокиси углерода и воды [14]. Цикл трикарбоновых кислот, в ходе которого осуществляется это окисление, является жизненно важной частью метаболизма почти всех аэробных организмов. Центральное место этого цикла в метаболизме обусловлено еще и тем, что ацетил-СоА образуется также в процессах катаболизма углеводов и некоторых аминокислот. [c.317]

    Роль затравки ( куска-стартера ) чаще всего выполняет ацетил-СоА, однако для белков кролика более подходящей затравкой является бутирил-СоА, который образуется из ацетил-СоА путем обращения -окисления необходимые для этого ферменты имеются в достаточных количествах в цитозоле [25]. В синтезе разветвленных жирных кислот (разд. 10) и при образовании флавоноловых пигментов (дополнение 12-Б) в качестве затравки используются другие группы соединений. [c.485]

    На основании того, что почти все жирные кислоты (ЖК) в животных тканях имеют четное число атомов углерода, предполагали, что их синтез и распад происходит путем присоединения или отщепления двухуглеродных фрагментов. Классические опыты Ф. Кноопа в начале XX в. подтвердили эти предположения. Было показано, что ЖК последовательно окисляются по Р-углеродному атому, при этом отщепляется двухуглеродный ацетильный фрагмент в виде ацетил-КоА и ЖК укорачивается на два атома углерода на каждой стадии окисления. Полный процесс распада ЖК получил название реакций -окисления и включает следующие этапы. [c.98]

    Молекулы ацетил-СоА, образующиеся в качестве продукта окислешм жирной кислоты, вовлекаются затем в щпсл трикарбоновых кислот. Освобождающиеся в процессе дегидрирования пальмитиновой кислоты 14 пар атомов водородов включаются в дыхательную цепь. [c.105]

    Окисление жирных кислот с нечетным числом атомов углерода также может происходить в цикле окисления жирных кислот. Такие жирные кислоты редко встречаются в природе, но образуются в ходе окислительного расщепления валика и изолейцина. При окислении последовательное отщепление молекул ацетил-СоА происходит до тех пор, пока не останется трехуглеродный фрагмент в виде пропионил-СоА, который подвергается далее ферментативному карбоксилированию, в результате которого получается метилмалонил-СоА. Ферментом является пропионилкарбоксилаза  [c.105]

    Коэнзим А играет также ключевую роль в биосинтезе жирных кислот, который в настоящее время детально изучен. Так как связь С—S> в ацетильном производном коэнзима очень активна, то на первой стадии идет кондешсащия двух молей ацетил-КоА (I) с элиминированием. КоА (II) и образо1ва(нием ацетоацетил-КоА (III). При воостановлении карбонильной группы, дегидратации и гидрогенизации получается н-бу-танон-КоА (VI). [c.732]

    Цикл лимонной кислоты в его современной форме приведен на рис. 14.8. (Возможно, этот цикл требует некоторых уточнений.) Каждая из стадий превращения катализируется особым ферментом, а некоторые стадии сопровождаются побочными реакциями, лишь немногие из которых здесь показаны. Некоторые стадии приводят к превращению АДФ в АТФ. Ацетил-8КоА, который вступает в цикл, может происходить из полисахаридов, жирных кислот или аминокислот. [c.404]

    В 1945—1947 гг. Липманом с сотрудниками был открыт коэнзим А (от слова ацетилирование), участвующий в ацетилировании холина в ацетил-холин и в других реакциях ацетилирования, причем было доказано, что этот коэнзим содержит пантотеновую кислоту [12]. Дальнейшее изучение показало, что в состав молекулы коэнзима А входят монофосфорный эфи пантотеновой кислоты, адениннуклеотид и 2-меркаптоэтиламин [13, А Кофермент А также участвует в окислительном распаде жирных кислот и играет большую роль в образовании фосфолипидов [15]. [c.137]

    В положениях, обозначенных зачерненным треугольником, находятся жирные кислоты 3 ацетила, 1 пропионнл, 1 изобутирил и 1 октаноил в положениях, обозначенных светлым треугольником, находятся сукцинильные группы. Метильные группы обозначены зачерненным кружком. [c.178]

    Опять-таки имеется семейство ферментов, специфичных к цепям разной длины. Одним из продуктов [уравнение (9-2)] служит ацетил-СоА, который поступает в цикл трикарбоновых кислот и подвергается катаболическому распаду с образованием СО2. Вторым продуктом тиолитического распада является ацил-СоА-производное, которое на два атома углерода короче исходной молекулы. Оно снова вступает в цикл р-окисления, причем в результате каждого оборота цикла освобождается двухуглеродный фрагмент, уходящий в виде ацетил-СоА [уравнение (9-2)]. Процесс продолжается до полного расщепления жирнокислотной цепи. Если исходная жирная кислота содержала в не-разветвленной цепи четное число атомов углерода, то ацетил-СоА бу- [c.309]


    При расщеплении жирной кислоты с четным числом атомов углерода путем р-окисления последним промежуточным продуктом перед полным превращением в ацетил-СоЛ служит четырехуглеродный аце-тоацетил-СоА  [c.315]

    Какими же факторами определяется скорость функционирования цикла трикарбоновых кислот Как и в других важнейших метаболических путях, работает несколько разных механизмов контроля, причем в различных условиях скорость лимитируется разными стадиями процесса [18] Главными факторами являются 1) скорость поступления ацетильных групп (которая в свою очередь может зависеть от наличия свободного неацилированного СоА) 2) наличие оксалоацетата и 3) скорость реокисления NADH в NAD+ в цепи переноса электронов (гл. 10). Обратите внимание (рис. 9-3), что ацетил-СоА служит по-лом<ительным эффектором для превращения пирувата в оксалоацетат. Таким образом, ацетил-СоА включает процесс образования соединения, требующегося для его собственного метаболизма. В отсутствие пирувата функционирование цикла может затормозиться из-за недостатка оксалоацетата По-видимому, именно так и происходит в тех случаях, когда в печени метаболизируются высокие концентрации этанола Последний окисляется в ацетат, но не может превратиться в оксалоацетат. Накапливающиеся ацетильные группы превращаются в кетоновые тела, которые, однако, медленно окисляются в цикле. Аналогичная проблема возникает при метаболизме жирных кислот в условиях нарушения углеводного обмена, например в случае диабета (дополнение 11-В). [c.324]

    При р-окислении жирных кислот с нечетным числом атомов углерода происходит образование не только ацетил-СоА, но и пропионил-СоА. Трехуглеродная пропионильная группа образуется также при расщеплении изопреноидных соединений, изолейцина, треонина и метионина. [c.330]

    При р-окислении от цепи жирных кислот отщепляется по два углеродных атома одновременно. В биосинтезе же жирных кислот этот процесс протекает в обратном направлении, причем в качестве исходного материала используются двухуглеродные ацетильные единицы ацетил-СоА. Выше уже были рассмотрены вопросы о сопряжении этого процесса с расщеплением АТР при помощи последовательности карбоксили- [c.484]

    Мы видели, что ацетил-СоА может быть использован для синтеза жирных кислот с длинной цепью и что это достигается карбоксилированием до малонил-СоА. Малонильную группу мы можем рассматривать как -карбоксилированную ацетильную группу. В процессе синтеза Жирных кислот происходит отщепление карбоксильной группы, и в жирную кислоту в конечном счете включается только ацетильная группа. Аналогично пируват можно рассматривать как а-карбоксилированный ацетальдегид, а оксалоацетат — как а- и р-дикарбоксилированный ацетальдегид. В процессе биосинтетических реакций эти трех- и четырехуглеродные соединения очень часто подвергаются декарбоксилированию. Таким образом, оба эти типа соединений можно рассматривать как активированные ацетальдегидные единицы . Фосфофенолпируват представляет собой а-карбоксилированную фосфофенольную форму ацетальдегида перед включением двухуглеродной единицы в конечный продукт он подвергается декарбоксилированию и дефосфорилированию. [c.487]

    Важнейшим этапом регуляции синтеза липидов служит активация ацетил-СоА — карбоксилазы цитратом (гл. 8, разд. В,2 рис. 11-1). Помимо этого, синтез и распад триглицеридов, накапливающихся в печени и жировой ткани, находятся под сложным гормональным контролем. Так, адреналин и глюкагон, стимулируя образование с АМР, вызывают активацию липаз, которые расщепляют триглицериды таким путем происходит мобилизация жировых депо. С другой стороны, инсулин способствует накоплению жиров этот эффект обусловлен не только увеличением активности ферментов липогенеза, и в первую очередь АТР-зависимого цитратрасщепляющего фермента [уравнение (7-70)], но также ингибированием образования с АМР и, как следствие, подавлением липолиза в клетках. Наконец, сывороточная липопротеидлипаза. (называемая также осветляющим фактором ) расщепляет липиды, входящие в состав сывороточных липопротеидов, в процессе прохождения последних через мелкие капилляры. Освобождающиеся при этоМ жирные кислоты поступают в клетки, где вновь включаются в состав-липидов [44]. [c.556]

    На основе небольшого числа изменений исходной поликетоновой структуры возможен биосинтез многих необычных соединений [74]. Так, в некоторых случаях путем гидроксилирования происходит введение дополнительных атомов кислорода возможен перенос метильных групп от S-аденозилметионина с образованием метоксильных групп в отдельных случаях метильная группа присоединяется непосредственно к углеродной цепи. Помимо ацетил-СоА в качестве исходных структур синтеза поликетидов могут выступать как жирные кислоты с разветвленной цепью, образованные из валина, лейцина и изолейцина, так и никотиновая и бензойная кислоты. Исходной структурой биосинтеза антибиотика тетрациклина служит, по-видимому, амид малоновой кислоты в виде СоА-производного (рис. 12-10). На рис. 12-10 показано образование из поликетидов других важных антибиотиков. [c.563]

    Распад жиров с образованием глицерина и жирных кислот. Липаза а (из поджелудочной железы) разрывает сложноэфирные связи 1 и 3 в молекуле ацилглицеринов, а липаза Ь (из слизистой кишечника) разрывает связь 2, в результате чего образуются моно- и диацилглицериды. Только после длительного действия липаз отщепляются все три жирные кислоты, причем последней разрывается сложноэфирная связь в положении 2. Глицерин вступает в реакции гликолиза, а жирные кислоты подвергаются распаду в ходе специфического процесса - Р-окисления жирных кислот, получившего такое название потому, что в молекуле жирных кислот окисление идет по р-углеродному атому, при этом от жирной кислоты отщепляется двухуглеродный фрагмент - ацетил-КоА. [c.98]

    Поскольку жирные кислоты имеют высокую степень восстановленно-сти, то при их окислении выделяется большое количество энергии. Дополнительные ферменты при Р-окислении требуются для кислот с нечетным числом углеродных атомов. При их окислении образуется несколько молекул ацетил-КоА и одна молекула пропионил-КоА. Последний затем [c.98]

    Третий пример взаимосвязи процессов метаболизма - общие конечные пути. Такими путями для распада всех биомолекул являются цикл лимонной кислоты (цикл Кребса) и дыхательная цепь. Эти процессы используются для координации метаболических реакций на различных уровнях. Так, цикл лимонной кислоты является источником СО2 для реакций карбоксилирования, с которых начинается биосинтез жирных кислот и глюкогенез, а также образование пуриновых и пиримидиновых оснований и мочевины. Взаимосвязь между углеводным и белковым обменом достигается через промежуточные метаболиты цикла Кребса а-кетоглутарат и глутамат, оксалоацетат и аспартат. Ацетил-КоА прямо участвует в биосинтезе жирных кислот и в других реакциях анаболизма, а в этих процессах связующими конечными путями выступают реакции энергетического обеспечения с использованием НАДН, НАДФН и АТФ. Важно подчеркнуть, что главным фактором для нормального обмена веществ и протекания нормальной жизнедеятельности является поддержание стационарного состояния. [c.120]

    Аналогично можно сформулировать механизм биосинтеза жирных кислот посредством последовательного присоединения двууглеродных фрагментов к молекуле ацетилкофермента А ( исходная частица ). Однако, по крайней мере в данном случае, необходим, по-видимому, более эффективный нуклеофил, и поэтому в качестве удлиняющего цепь агента используется малонилкофермент А (83) [70] (последний образуется из ацетилкофермента А в результате АТР-зависимого ферментативного карбокснлирования). Движущей силой реакции конденсации является декарбоксилирование, сдвигающее равновесие вправо, в результате чего образуется ацето-ацетильное производное. Прежде чем вступить в конденсацию, ацетильные и малонильные группы переносятся, вероятно, на специальный белок-носитель, а затем на фермент (синтетазу жирных кислот). В каждом случае, однако, конденсация проходит с участием тиоловых сложных эфиров и формально аналогична показанной на схемах (55), (56). Биосинтез поликетидов протекает по близкому механизму. [c.614]


Смотреть страницы где упоминается термин Ацетил-КоА жирных кислот: [c.287]    [c.113]    [c.104]    [c.146]    [c.636]    [c.270]    [c.116]    [c.80]    [c.21]    [c.192]    [c.459]    [c.464]    [c.485]    [c.516]    [c.546]    [c.561]    [c.71]    [c.20]    [c.102]    [c.133]    [c.343]   
Биохимия растений (1966) -- [ c.298 , c.299 , c.323 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетил кислота



© 2025 chem21.info Реклама на сайте