Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение полимеров

    Рассмотрим факторы, влияющие на набухание и растворение полимеров. Температура и давление влияют на эти процессы в соответствии с принципом Ле Шателье. Если набухание (растворение) сопровождается выделением теплоты, то с повышением температуры степень набухания (растворимость) уменьшатся. Однако скорость набухания (растворения) растет в соответствии с увеличением скорости диффузии. Так как объем системы при набухании уменьшается, то с ростом давления степень набухания повышается. [c.318]


    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    Механизм действия вязкостных присадок. Загущенные масла являются растворами высокомолекулярных соединений в дистиллятных маслах. Макромолекулы присадок по размерам в сотни раз превосходят молекулы масла, поэтому растворение полимера в масле приводит к повышению его вязкости. [c.144]

    Следует отметить, что процесс растворения полимеров развернут во времени проникновение молекул растворителя в полимерный субстрат происходит постепенно. Оно реализуется тем быстрее, чем более гибки макромолекулы и чем меньше плотность их упаковки. Диффузия растворителя в полимер приводит к постепенному разрыву межмолекулярных контактов между цепями, увеличивая их подвижность. [c.90]

    Так как растворение полимеров происходит, главным образом, благодаря росту энтропии, то и устойчивость этих коллоидных систем объясняется в- основном энтропийным фактором. Кроме [c.317]

    В реальных растворах взаимодействие между молекулами растворителя и полимера приводит к изменению равновесной гибкости полимерных цепей и, как результат, к изменению числа кинетически независимых сегментов макромолекул. Увеличение концентрации растворенного полимера обусловливает также возрастание вероятности столкновений сегментов соседних молекул, что соответствует интенсификации межмолекулярных взаимодействий в системе и характеризуется изменением химического потенциала Ац1 [см. уравнение (1.23)]. [c.106]

    Среди различных методов, применявшихся прежде, только один Грэй-процесс существует до сих пор. Дистиллятные пары выводятся непосредственно из ректификационной колонны крекинг-установки и пропускаются сверху вниз через отбеливающую глину. Часть тяжелых фракций дистиллята конденсируется и служит в качестве растворителя для растворения полимеров, выделенных в адсорбционной башне. Пары, покидающие адсорбционную башню, фракционируются в ректификационной колонне для получения бензина с заданным концом кипения тяжелые фракции растворяют полимеры, которые скопились в адсорбционной башне, и обычно возвращаются на крекинг-установку. Чтобы не допустить чрезмерного коксообразования, они раньше пропускаются через эвапоратор (или смолоотделитель), где более тяжелые полимеры удаляются вместе со смолой. Эти более тяжелые полимеры интересны возможностью применения их вместо окрашенных смол. [c.273]


    Сухой метод заключается в растворении полимера, например эфира целлюлозы или смеси эфиров, в растворителях типа ацетона и добавления к этому раствору соответствующих порообразующих агентов (этанол, бутанол, вода, глицерин и др.). Размер пор таких мембран зависит от концентрации полимера в растворе, типа растворителя, температуры формования и т. п. К достоинству пленок, полученных по данному методу, прежде всего следует отнести возможность их хранения и транспортирования в сухом виде. [c.48]

    Продолжительность полного растворения полимера То же, п. 4.3 + [c.300]

    Для полимеров, обладающих пространственной структурой, не происходит полное взаимное растворение полимера и низкомолекулярного компонента, так как пространственная сетка является жесткой надмолекулярной структурой, действующей подобно непроницаемой мембране для остальной массы растворителя и препятствующей дальнейшему увеличению размеров образца полимера. Этот факт и учитывается в уравнении (4.4), где в условиях равновесия величина [c.313]

    В полиэтилентерефталат. Реакция с умеренным тепловым эффектом проходит при высокой температуре, достигающей в конце процесса 265° С. Повышенная вязкость заставляет вести перемешивание так, чтобы стенки реактора, через которые происходит перенос тепла от слоя растворенных полимеров, постоянно очищались от образующейся пленки. [c.131]

    Полимеры обычно используют в виде слабоконцентрированных водных растворов, которые подают в систему поддержания пластового давления. При этом повышается коэффициент нефтеотдачи. Полимерные реагенты в процессах вытеснения нефти способствуют увеличению коэффициента охвата tioib пласта снижением соотношения подвижностей воды и нефти (АаЦв)/(м.а н). Этот параметр может быть улучшен уменьшением фазойой проницаемости по воде fea и вязкости нефти цн, увеличением фазовой проницаемости по нефти йн и вязкости воды Ца. Растворение полимера в закачиваемой воде увеличивает ее вязкость. Так как за исключением тепловых методов возможностей для изменения фильтрационных характеристик пластовой системы практически нет, то загущение закачиваемой воды — единственное средство увеличения коэффициента охвата пласта при заводнении. [c.103]

    Каковы особенности растворения полимеров Какой процесс на- [c.155]

    При растворении полимера происходит уменьшение химического потенциала растворителя в растворе щ по сравнению с его [c.27]

    Коэффициент диффузии В существенно зависит от концентрации растворенного полимера. Поэтому обычно определяют значение коэффициента диффузии для растворов полимера при 4-5 различных концентрациях (но в области С < 1/[т1]), после чего экстраполяцией к С О определяют [c.39]

    Значение В является также мерой сродства между растворителем и полимером. Растворение полимера - самопроизвольный процесс, сопровождающийся уменьшением химических потенциалов. Поэтому коллигативные характеристики, в том числе и осмотическое давление Яо, являются мерой интенсивности взаимодействия между полимером и растворителем. В хорошем растворителе значения В велики. При растворении полимера в плохом растворителе происходит минимальное изменение коллигативных свойств. [c.107]

    При концентрации растворенного полимера, большей 1л1 , в растворах существенно возрастает вероятность взаимных контактов макромолекул, обусловливающая интенсификацию межмолекулярных взаимодействий и, как результат, возникновение аномалии вязкостных свойств. Характерной особенностью таких растворов является существенное подавление термодинамической гибкости сольватированных макромолекул и все более отчетливое проявление кооперативного характера изменений структуры растворов при тепловых и (или) механических воздействиях изменение конформации индивидуальной цепи определяется возможностями, которые обеспечивают ей соседние сольватированные макромолекулы. Полимеры в вязкотекучем состоянии представляют собой псевдопластичные аномально вязкие жидкости. [c.172]

    Растворы концентрированные - растворы, в которых С > [т1]" и макромолекулы растворенного полимера взаимодействуют друг с другом. [c.404]

    Из теории Флори — Хаггинса следует, что растворение полимера в хороших растворителях сопровождается существенным уменьшением энергии Гиббса, что обусловлено как выделением теплоты (ДЯ<6), так и ростом энтропии. В таких системах Лг > О и % < 7г (отрицательное отклонение от идеальности). Это означает, что силы отталкивания между макромолекулами в растворе полимера обусловлены энтропийной составляющей и взаимодействием с растворителем. В плохих растворителях (Лг < 0) происходит поглощение теплоты (АН >0), и силы оттал14Ивання между макромолекулами имеют исключительно энтропийную природу рост энтропии полностью перекрывает рост энергии Гиббса вследствие межмолекулярного взаимодействия. В этих системах возможно достижение температуры Флори (положительная энтальпия смешения компенсируется избыточной энтропией), ниже которой доминируют силы притяжения между макромолекулами (Лг < 0). [c.324]

    Удельный парциальный объем растворенного полимера V - отношение объема к массе т полимера в растворе У/т у = 1/Со - (1/р)[1/(1 - С )], где С -объемная концентрация (г/см , кг/м ) С - массовая концентрация (г/г, кг/кг) р - плотность растворителя (г/см , кг/м ). [c.407]

    Полимерные соединения сравнительно легко реагируют с кислородом воздуха. Результатом этого процесса является окислительная деструкция макромолекул. Чем выше молекулярный вес полимера, тем в большей степени полимер подвергается окислительной деструкции. Интенсивность этой реакции возрастает под влиянием таких воздействий, которые способствуют активации кислорода и увеличению скорости его диффузии внутрь полимера (ультрафиолетовое облучение, повышение температуры, растворение полимера и др.). Деструкция вг зывает разрыв макромоле-кулярных цепей и изменение состава отдельных звеньев цепи. [c.15]


    II мало зависит от молекулярного веса растворенного полимера. [c.80]

    V—удельный объем растворенного полимера р—плотность растворителя. [c.80]

    Механизм растворения полимеров отличается от механизма растворения мономеров. Если при растворении последних их частицы уносятся (диффундируют) в объем растворителя, то при растворении полимеров их громадные молекулы прочно удерживаются друг другом и вместо диффузии молекул полимера в объем растворителя происходит диффузия молекул растворителя [c.295]

    Главной особенностью полимеризации в растворе является ее проведение при температурах 110—150°С. Это делается для того, чтобы обеспечить растворение полимера. Остаток катализатора можно удалить фильтрацией горячего раствора полимера. При этом исключаются затраты, связанные со стадией обез-золивания, и получается очень чистый полипропилен. Полимер выделяют из раствора кристаллизацией и центрифугированием. Для сокращения времени пребывания в реакторе и повышения [c.202]

    I Для хорошего набухания и растворения полимера необходима его близость по природе (или полярности) к растворителю. Если Они сильно различаются по этим параметрам, то набухания я растворения не происходит. Например, неполярные полимеры алифатического ряда хорошо смешиваются с неполярными предельными углеводородами (бензином) и не взаимодействуют с силь-рополярными жидкостями (вода, спирты). Полярные полимеры [ [целлюлоза, поливиниловый спирт) не взаимодействуют с углево- цородами и хорошо набухают и растворяются в воде. Ароматиче-. кии полистирол не растворяется в воде, слабо набухает в бензине, 1(0 хорошо растворяется в ароматических растворителях (толуол, [c.318]

    Растворы высокомолекулярных соединений являются термодинамически устойчивыми (лиофильными) коллоидными система-ми — молекулярными коллоидами. В соответстви с закономерностями образования лиофильных систем растворение полимеров происходит самонроизвольпо (самопроизвольное диспергирование). Термодинамическая устойчивость, обратимость лиофильных коллоидов указывают иа воз.можность применения к таким системам правила фаз Гиббса в той же форме, что и для истинных растворов. [c.320]

    В колбу с притертой пробкой помещают точно взвешенную навеску полимера (0,2—0,3 г), приливают 30 мл ацетона, закрывают лробкой и выдерживают (периодически встряхивая колбу) при комнатной температуре до полного растворения полимера. Затем добавляют 10 мл раствора соляной кислоты в ацетоне (раствор готовят смешением 5 мл концентрированной соляной кислоты в 200 мл -ацетона) и, закрыв пробкой, выдерживают 30 мин. Избыток соляной кислоты оттитровывают 0,1 и. раствором гидроксида натрия в присутствии фенолфталеина. Параллельно проводят контрольный опыт без навески полимера по той же методике. [c.122]

    Высокополимеры, как и низкомолекулярные веш,ества, могут образовывать истинные и коллоидные растворы. Если молекулы полимера и растворителя взаимодействуют между собой, то в этом растворителе полимер растворяется самопроизвольно. Если же юлимер не г заимодействует с растворителем, самопроизволь-иого растворения полимера не происходит и для получения раствора необходимо диспергирование полимера в жидкости. В последнем случае образуется коллоидный раствор. Наибольший теоретический и практический интерес представляют истинные растворы полимеров, свойства которых и будут здесь рассмотрены. [c.61]

    Набухание полимеров. Процесс растворения полимеров, как указывалось, проходит через стадию их набухания. Внешне процесс набухания выражается в изменении объема и веса образца вследствие поглощения полимером растворителя. Набухание можно рассматривать как одностороннее смешение, т. е. только как проникание растворителя в полимер. Подвижность макромолекул слишком мала, а силы когезин велики, поэтому вначале макромолекулы полимера пе диь 1фуиднруют в растворитель. Молекулы растворителя, диффундируя в полимер, вначале заполняют в нем межмолекулярные пространства, а затем, по мере увеличения объема растворителя в полимере, начинают раздвигать макромолекулы. Скорость диффузии растворителя в полимер мавпсит от свойств растворителя и структуры полимера, С увеличением количества продиффундировавшего в полимер растворителя расстояние между макромолекулами постепенно возрастает, что приводит к пропорциональному увеличению размеров набухающего образца. Таким образом, набуханием называют проникание молекул растворителя между макромолекулами 1[олимера, вследствие чего увеличиваются расстояния между 01-дельными сегментами, а затем и цепями полимера. [c.63]

    Первые два метода основаны на зависимости растворимости иолимера от его молекулярного веса. Очевидно, чем меньше молекулярный вес полимера, тем лучше его растворимость. Постепенно повышая температуру растворителя или подбирая систему растворителей, поочередно извлекают из полимера отдельные фракции все возрастающего молекулярного веса. Для фракционирования более удобно использовать полимер в виде пленок, получаемых из раствора полимера и наносимых на металлическую фольгу, В этом случае дробное растворение полимера происходит быстрее, чем при использовании его в виде порошка. Более тщательное разделение достигается по методу дробного осаждения. Сущност1< (ТО заключается в том, что при добавлении в раствор полимера небольших количеств осадителя (до появления мути) первыми выпадают наиболее высокомолекулярные фракции. По достижении равновесия между осадком и раствором осажденную фракцию отделяют и в оставшийся раствор вновь вводят осадитель, повторяя эту операцию несколько раз. [c.74]

    Наиболее благоприятным условием полимераналогичных пре вращений является предварительное растворение полимера. Рас-гворитель раздвигает отдельные макромолекулы полимера, облегчая этим доступ реагирующих веществ к отдельным звеньям цепей. Однако такие условия реакции можно создать лишь для по-.пимеров линейной или разветвленной структуры. Сетчатые полимеры не переходят в раствор, однако доступ реагирующих веществ [c.171]

    В процессах химических превращений иолимеров следует избегать применения высоких температур, концентрированых кис-. ют и щелочей, а тем более окислителей. Полимераналогичные превращения рекомендуется проводить в атмосфере азота. Эти предосторожности необходимы для уменьшения возможности про-гекания процессов деструкции, которые могут привести к разрыву макромолекулярных цепей (т, е. к снижению их среднего молекулярного веса), к появлению новых разветвлений (т. е. к изменению структуры цепей) и, наконец, к различным нежелательным побочным процессам в результате вторичных реакций между функциональными группами. Особенно интенсивно развиваются процессы окислительной деструкции г[ри химических превращениях предварительно растворенных полимеров. Растворение полимера облегчает доступ к отдельным звеньям цепей не только для реагирующих веществ, но и для кислорода, в результате оба процесса становятся конкурирующими. С повышением температуры реакционной смеси, увеличением интеис ивности перемешивания и при введении даже очень небольшого количества окислителей усиливается деструктируюш,ее влияние кислорода. [c.172]

    Отщепление хлористого водорода в растворе полимера на-б, подается и нрн обычной температуре, одновременно постепенно уменьшается молеку.лярный вес образца. Очевидно, доступ кислорода воздуха к макромолекулам растворенного полимера шачительно облегчен, поэтому процесс окисления, обычно сопутствующий отщеплению хлористого водорода, начинает протекать с большей скоростью по сравнению со скоростью реакций образования двойне,ix связей в отдельшлх звеньях макромолекул или поперечных связей между соседними макромолекулами. [c.269]

    За - вторая стадия 36 - вторая стадия набухания с чаотш-вым растворением полимера  [c.64]

    Различают шда набухания ограничен но ей неограниченное. В пел ом случае набухание прекращается, достигнув определенного предела. Набухшее тело сохраняет свою форму и четкую хфаницу раздела о хидков средой. Ограничен но набухший полимер называетоя студнем (см. о.78). Во втором случае набухание с течением времени завершается полным растворением полимера. [c.64]

    По мокрому способу раствор экструдируют непосредственно в коагулирующую ванну, заполненную либо коагулянтом, либо жидкостью, которая химически реагирует с растворенным полимером. В обоих случаях из раствора высаждаются полимерные струи. Необходимо отметить, что физические или химические процессы, происходящие в коагулирующей ванне, также влияют на структуру и свойства получаемого волокна. [c.479]

    Важнейшими свойствами полимеров, определяющими их технологические качества, являются лиофоб-ность ( боязнь растворителя) и лиофильность ( любовь к растворителю). Полимеры не растворяются в веществах, к которым они лиофобны гидрофобные полимеры нерастворимы в воде и других полярных растворителях, а олеофобные — нерастворимы в углеводородах нефти. Растворение полимеров возможно лишь в тех растворителях, к которым они лиофильны гидрофильные полимеры могут быть растворены в воде и других полярных растворителях, а олеофиль-ные — растворимы в нефтепродуктах. [c.218]

    Растворение полимеров проходит через предварительное набухание, которое заканчивается образованием жидкотекучих растворов. Если молекулы полимера имеют пространствеино-развитое строение или сшиты между собой, то процесс растворения полимера затормаживается на стадии набухания — происходит ограниченное набухание. Таковы, например, желатин в холодной воде, различные сорта резины и некоторые пластмассы в углеводородах. Ограниченное набухание полимера характеризуется степенью набухания а, определяемой как отношение приращения [c.218]


Смотреть страницы где упоминается термин Растворение полимеров: [c.301]    [c.34]    [c.40]    [c.40]    [c.198]    [c.199]    [c.101]    [c.313]    [c.62]    [c.65]    [c.295]   
Смотреть главы в:

Физическая и коллоидная химия -> Растворение полимеров

Препаративные методы химии полимеров -> Растворение полимеров

Основы физики и химии полимеров -> Растворение полимеров

Основы физики и химии полимеров -> Растворение полимеров

Свойства и химическое строение полимеров  -> Растворение полимеров

Свойства и химическое строение полимеров -> Растворение полимеров

Химическая стойкость полимеров в агрессивных средах -> Растворение полимеров

Полимеры -> Растворение полимеров


Физикохимия полимеров (1968) -- [ c.232 , c.315 , c.316 , c.324 , c.372 ]

Физикохимия полимеров (1968) -- [ c.232 , c.315 , c.316 , c.324 , c.372 ]

Физико-химические основы переработки растворов полимеров (1971) -- [ c.214 ]

Свойства и химическое строение полимеров (1976) -- [ c.285 , c.288 ]

Основы технологии органических веществ (1959) -- [ c.449 , c.451 ]

Физико-химия полимеров 1963 (1963) -- [ c.0 , c.202 , c.296 ]

Свойства и химическое строение полимеров (1976) -- [ c.285 , c.288 ]

Основы технологии органических веществ (1959) -- [ c.449 , c.451 ]

Кинетика полимеризационных процессов (1978) -- [ c.82 , c.89 ]

Химическая стойкость полимеров в агрессивных средах (1979) -- [ c.276 , c.277 , c.283 , c.285 ]

Теоретические основы общей химии (1978) -- [ c.170 ]

Физико-химические основы процессов формирования химических волокон (1978) -- [ c.32 , c.49 ]

Физико-химические основы производства искусственных и синтетических волокон (1972) -- [ c.67 ]

Высокомолекулярные соединения Издание 2 (1971) -- [ c.368 ]

Химия и технология синтетического каучука Изд 2 (1975) -- [ c.71 , c.81 ]




ПОИСК







© 2025 chem21.info Реклама на сайте