Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы остатков

    Образующиеся в процессе крекинга газы содержат олефины, которые полимеризацией или алкилированием могут быть превращены в полимер-бензин или алкилат, которые могут быть присоединены к крекинг-бензину. Этот процесс, не относящийся к нефтехимическим, здесь не рассматривается. В других случаях, например при значительном спросе на мазут, целесообразно в качестве сырья для крекинга использовать прямогонные фракции, выкипающие в пределах 200—400°, а остаток от прямой перегонки нефти использовать как отопительный мазут. Такое топливо, однако обладает чрезмерно высокой вязкостью. Его можно подвергать легкому крекингу, при котором образуется лишь немного бензина, но заметно понижается вязкость остатка. Это явление, называемое разрушением вязкости , весьма часто используется в технологии. Бензиновая фракция нефти, так называемый прямогонный бензин, разделяется далее на две фракции легкий и тяжелый бензины. Тяжелая бензиновая фракция для улучшения моторных свойств подвергается термическому или каталитическому риформингу, заключающемуся в кратковременном нагреве при высоком давлении в присутствии катализатора или без него, улучшающему антидетонационные свойства бензина. Принципиальная схема современного метода переработки нефти представлена на рис. 7 [7]. [c.18]


    Дезактивация катализатора. Как указывалось выше, часть алкоголятов натрия разрушается при взаимодействии с примесями жиров. Кроме того, в процессе переэтерификации образовавшийся глицерат натрия также постепенно разрушается, образуя натриевые мыла, моно- и диглицериды. Поэтому при правильно выбранной дозировке катализатора остаток глицерата натрия, который необходимо дезактивировать по завершении реакции переэтерификации, не превышает 30—40% первоначального количества. [c.249]

    После гидрирования спирты выделяют ректификацией. Для тонкой очистки спиртов их обрабатывают водородом на никелевых катализаторах. Остаток после выделения спиртов (состоящий из более высокомолекулярных спиртов, чем целевой, и гликолей) используют в качестве растворителя при гидроформилировании низ-щих олефинов. [c.382]

    Было взято 1,0 г катализатора, 2,152 г дифенилфульвена, 90 мл спирта. Температура опыта 23 С атмосферное давление 750 мм давление водяных паров 20 мм. Для насыщения всех трех двойных связей при этих условиях должен был пойти объем водорода, равный 705 мл. Поглотилось 708 мл. Опыт повторялся дважды. Спирт отгонялся с дефлегматором после отфильтрования катализатора. Остаток перегонялся в вакууме при 178—180 С / 11 мм. Температура плавления его 34,5 С. [c.573]

    В прошлом нефть служила в основном для получения керосина, смазочных масел и котельного или печного (отопительного) топлива. С распространением двигателей внутреннего сгорания и с постоянно возрастающим спросом на бензин перед нефтяной промышленностью была поставлена задача получать из нефти больше бензина, чем его в ней первоначально содержится. Эта задача была решена при помощи крекинг-процесса. Процессы расщепления под влиянием тепла (термический крекинг) или тепла и катализатора (каталитический крекинг) позволяют получить из нефти не только больше бензина, чем было первоначально в нефти, но и бензин лучшего качества. Крекингу подвергают чаще всего высококипящие фракции, представляющие собой остаток после отгона от нефти при нормальном давлении бензина прямой перегонки, керосина и в отдельных случаях дизельного топлива. [c.17]

    Ситовой анализ заключается в последовательном пропускании пробы катализатора через сита с уменьшающимися размерами отверстий и в определении массы материала, проходящего через каждое сито. Найденную крупность материала обозначают цифрами в миллиметрах или микронах, соответственно размерам отверстий сита, или его номером. Если, например, часть пробы катализатора проходит через сито с отверстиями 1 мм и не проходит через сито с отверстиями 0,5 мм, то крупность этой фракции может быть обозначена несколькими способами фракция 1,0+0,5 мм или фракция 0,5 1,0 , или остаток на сите №05, прошедший через сито № 1 . Чаще всего применяют первые два способа записи. [c.12]


    Выходящие из печи (где происходит окисление) газы освобождаются промывкой водой от ацетальдегида и выбрасываются из установки. Оксидат разделяется в ряде колонн. Сначала от оксидата отделяют избыточный ацетальдегид, воду и этилацетат (растворитель), после чего остаток в другой колонне разделяют на уксусную кислоту, уксусный ангидрид и катализатор. Последний возвращается снова в аппарат, где происходит окисление. Смесь, состоящую из ацетальдегида, этилацетата и воды, отделяют в специальной колонне от ацетальдегида, который также возвращается на окисление. Этилацетат и воду далее также разделяют и первый вновь используют как разбавитель и растворитель. [c.158]

    I — исходный 53% остаток кувейтской нефти 2 — остаток, не вошедший в поры катализатора. [c.39]

    Данные указанных авторов приведены в табл. 13. В табл. 14 ноказано-влияние количества кокса на катализаторе на отношение Н/С для кокса. Данные в этих таблицах с очевидностью подтверждают тот вывод, что кокс представляет собой сильно ароматизированный остаток, адсорбированный на катализаторе. Повышение температуры приводит к удалению части остатка в виде легких углеводородных газов (в основном, метана) и водорода. При этом остаток становится еще более углеродистым. При высокой температуре конечным продуктом такого разложения является, по-видимому, графит, поскольку некоторое количество его было найдено на катализаторах, работавших долгое время. [c.159]

    Другой путь решения вопроса о деалкилировании побочных продуктов состоит в том, что весь остаток, кипящий выше этилбензола, в отдельной системе в присутствии кислотных катализаторов на носителе пропускают в паровой фазе при высоких температурах (т. е. выше 200°). Суммарный выход этилбензола в процессе Дау составляет 95,5 % на бензол и 96,8% на этилен. Расход катализатора 1—3 кг АЮЦ/ЮО кг [c.493]

    Сырые спирты после колонн гидрирования направляются на дистилляцию. После выделения н- и изобутилового спирта кубовый остаток делится на два потока одна часть используется в качестве растворителя, а другая часть подается на повторное гидрирование, осуществляемое на стационарно>1 катализаторе. Спирты, получаемые в результате ректификации продуктов повторного гидрирования, направляются на склад готовой продукции. [c.69]

    Крекинг. В литературе описан способ крекирования смеси побочных продуктов при 300—380 °С и атмосферном давлении в присутствии серной кислоты как катализатора или без нее . При осуществлении процесса периодическим способом температуру в аппарате постепенно повышают до 380 °С и непрерывно отбирают образующиеся дистиллятные продукты. В том случае, если предполагается использовать фенолы в виде смеси, из дистиллята выделяют только хлорбензол. если нужно получать индивидуальные фенолы, проводится ректификация дистиллята. Крекинг можно вести до образования жидкого остатка или до кокса и в том и в другом случае остаток легко выгружается из аппарата. Температуру жидкого остатка нужно поддерживать 150—200 °С, а кокс можно выгружать и после охлаждения. [c.182]

    Продолжительность второй ступени меньше здесь образуется около 55% сырого бензина и около 6% стабильного газа (содержащего 60% метана и этана) остаток отделяют и возвращают в процесс. Регенерацию катализатора, теряющего активность из-за отложения на нем углерода, проводят простым окислением воздухом при 500 °С (выжигание). Схема установки гидрирования показана на рис. 87. [c.247]

    Сравнительно небольшие изменения рабочих условий приводят к существенным изменениям состава продуктов реакции. Так, если при использовании смесей газов, в которых отношение На СО равно 0,8—1, повысить давление до 18—20 ат и добавить немного карбоната калия, то образуется продукт, содержащий 25—40% олефиновых углеводородов и 35—40% спиртов остаток составляют парафиновые углеводороды. Проводя реакцию при 200 ат, можно получить 80% спиртов, а в присутствии рутениевого катализатора — парафины с высокой температурой плавления и молекулярным весом 23 тыс., что соответствует молекуле с 1650 атомами углерода. [c.256]

    Для более полной характеристики свойств катализатора указывают также величину конверсии сырья в объемных процентах (100% минус остаток от перегонки). [c.155]

    С катализатором, нагревается до температуры прнолизительно 470° и поступает вместе с водородом в реактор Р1 первой ступени. Оттуда вся масса последовательно проходит через два горячих сепаратора 01 п 02 с низа последних удаляется нрн помощи специальных дроссельных устройств высококинящий жидкий остаток гидрогенизации вместе с катализатором остаток может быть вновь возвращен в систему в смеси с исходным сырьем. [c.224]

    После отделения катализатора остаток перегоняют в вакзгуме, отбирая парфюмерную фракцию сантала-А. [c.235]

    Пенообразование раствора приводит к потерям диэтаноламина и к другим нежелательным последствиям. Оно возникает, как правило, в абсорбере. Пенообразование может быть вызвано разнообразными причинами, в частности, наличием примесей, заносимых с очищаемым газом пыль, пыль катализаторов, остаток ингибиторов коррозии, катиониды металлов, аниониды и т.д. Доказано, что сульфид железа является интенсивным пенообразователем. [c.243]


    При каталнтичес1Сом крекинг-процессе, как и Н])и термическом, образуются газ, бензин и пысококпнящне продукты. Склонные к коксообразова-нию, богатые ароматическими углеводородами продукты конденсации отлагаются на поверхности катализатора, который через определеиные промежутки времени регенерируется. Жидкий остаток (мазут) в этом процессе не отделяется. [c.40]

    Линии I — этилен II — хлористый водород Ш — катализатор, растворенный в хлористом этиле IV — свежий катализатор V — отработанный катализатор VI — вода VII—разбавленная соляная кислота VIII— хлористый этил IX — остаток. [c.198]

    Весьма инетересное применение метода ГПХ нашли авторы работы [32], которые оценили, как исключаются асфальтены из пор катализатора, применяемого при каталитическом гидрообессеривании остатков. Образец катализатора с известным распределением по размерам пор, погружают в нефтяной остаток с известным содержанием асфальтенов. Объем взятой навески остатка в 3 раза превышает общий объем пор взятой навески катализатора. Катализатор с остатком вьщерживают в автоклаве при постоянной температуре в течение 4 ч до установления равновесия, перемешивая каждые 1,5 ч. Для исключения возможности окисления воздухом свободное пространство автоклава заполняется азотом. После достижения равновесия жидкость, не проникшая в поры катализатора (наружная), сливают через сетку и анализируют методом ГПХ с получением распределения по размерам молекул и частиц и определением содержания металлов (ванадия, никеля). Жидкость, проникшая в поры катализатора (внутренняя), экстрагируется из катализатора последовательно бензолом и смесью метанола и бензола (1 1). После отгонки растворителя, оставшуюся жидкость анализируют так же, как и наружную часть остатка. [c.38]

    Например, алкилирование в присутствии ила-виковой кислоты, как катализатора, производится следующим образом (рис. 144) [821. В котел загружают 107С кг бензола, предварительно охлажденного до -1-10 , 547 кг безводной плавиковой кислоты и 1472 кг пропенполимера, смесь энергично перемешивают. Реакция заканчивается через 3—4 часа, после чего плавиковая кислота отгоняется прп 20°, а не вошедший в реакцию бензол при 80". Из смеси отгоняется 200 кг плавиковой кислоты и 305 КЗ бензола. Остаток от перегонки в течение получаса перемешивают с 10 кг кальцинированпой соды, фильтруют через фильтрпресс и в таком виде он поступает на дальнейшую переработку. Алкилирование может производиться также непрерывным способом. [c.234]

    Конверсия идет при температуре около 500° при пропускании смеси водяного газа и водяного пара через катализатор, который состоит из окиси железа, активнроаанной окисью хрома (90% Ре90з+5— 7% СггОз, остаток — влага). Процесс слабо экзотермичен и при хорошей изоляции аппаратуры не требуется никакого дополнительного обогреве. Органические и неорганические сернистые соединения предварительно удаляются из газа на установках грубой и тонкой сероочистки. Конверсии подвергается примерно 7з водяного газа. Смешение газа конверсии с остатком водяного газа дает смесь, содержащую СО + Нг в соотношении 1 2. [c.79]

    Очевидно, что полимеризация проходит при помощи цепной реакции. Это может быть цепь свободных радикалов, если первоначальное инициирование реакции осуществляется перекисями или радиацией или же это ионная цепь, если реакция катализирована карбоний-иопом или карбанионом. Катализаторами, снабжающими процесс карбоний-ионами являются кислоты (серная, сернистая, фосфорная, борофосфорная, фтористый водород, ди-водород-фтористо-борная) и катализаторы Фридель — Крафтса (хлорид и бромид алюминия, трифторид и трихлорид бора, хлорид железа, хлористый цинк, хлорид олова и хлорид титана) [323]. Примером катализаторов, образующих карбанионы, являются натрий [324—326], алкил-натрий-натрий-алкоокисло-натрий хлорид [327—330] и другие натрийорганические соединения [331]. В соответствии с теорией реакций при помощи кар-боний-иона протон кислотного катализатора присоединяется к олефиновой связи, образуя положительно заряженный остаток. [c.106]

    Максимальная активность катализатора достигается при отно-шенгш А1 Aie = 1 2. В качестве растворителя алифатические углеводороды пригодны болыпе. чем ароматические. Температуры полимеризации лежат в области от О до —30 °С, катализатор получают также преи-мущественно при этих температурах. Если хотят ввести растворимые в углеводородах катализаторы при температурах выше О °С, то добавляют комилексообразующие агенты, например простые эфиры, тиоэфиры, третичные а.мины пли фосфины, содержащие по крайней мере один разветвленный алкильный остаток или ароматическое кольцо. [c.312]

    Процесс фирмы Мобил-Баджер осуществляется при температуре выше 270 °С (катализатор стабилен до 565°С), давлении около 2 МПа, соотношении бензол этилен 6—7 1, объемной скорости 3 ч селективность по этилену 99% (рис. 61). Блок алкилнрования может состоять из двух и более реакторов, работающих в режиме алкилирование — регенерация. Регенерацию проводят в азотно-воздушной среде для исключения излишнего подъема температуры. Остаток из колонны выделения диэтилбензола вместе с отходящими газами может обеспечить 607о потребности установки в топливе. Кроме того, 95% тепла, затрачиваемого на проведение процесса, регенерируется в виде пара. Этот процесс позволяет использовать низкоконцентриро-ванпую этиленовую фракцию, обеспечивает повышенный выход целевого продукта. Для него характерны низкая энергоемкость, обусловленная высокой степенью утилизации тепла, отсутствие коррозии и вредных выбросов в атмосферу. [c.173]

    Предназначен для гидрообессеривания высокосернистых мазутов и гудронов из легких и тяжелых нефтей. Характеристики сырья и Выходы продуктов приведены в табл. 4.1. Схема процесса (рис. 4.1) однопроходная по сырью с очисткой циркуляционного газа от сероводородов [130]. Катализатор разработан самой фирмой, устойчив к отложению металлов, длительность работы от шести мес до года. Данных по содержанию металлов в сырье не приводится. Основной прюдукт — малосернистый остаток, который может быть использован как компонент малосернистого котельного топлива. Или после вакуумной перегонки дистиллят направляется на гидрокрекинг, а остаток на коксование для получения [c.152]

    В литературе отмечается, что при нагреве закоксованного катализатора до высоких температур часть кокса (адсорбированный на катализаторе высокоароматизированный остаток) превращается в легкие углеводородные газы и водород, а остаток обогащается углеродо.м. Предполагают, что конечным продуктом, получаемым при длительном высокотемпературном нагреве кокса, является графит, поскольку последний был обнаружен в катализаторах, испо.тьзовавшихся в течение длительного времени на заводских установках [117]. [c.118]

    Крекинг-установка термофор с двукратным подъемом катализатора [159]. Свежее сырье в количестве 1500 м сутки подается насосом 1 (рис. 102) через группу теплообменников 2 и змеевики трубчатой печи 3 в орошаемый испаритель 4. В испарителе при температуре 423° и давлении 0,8 ати сырье разделяется на две части пары и неиспаренный остаток. Пары перегреваются в змеевиках печи 5, а жидкий остаток направляется насосами 6 и 11 через фильтры 7 в реактор 9. Жидкость, забираемая насосом 8 с нижней тарелки испарителя, подается на прием насоса б. [c.236]

    В условиях каталитического крекинга на конверсию влияют все иоро-числонные выше факторы. Конверсия обычно определяется как разница между 100% и количеством остатка, кипящего выше 205° С в объемных процентах. Она является удобным показателем глубины крекинга как для пилотных, так и для промышленных установок. Тем не монее она пе определяет полностью влияние катализатора на исходное сырье. Первичные продукты реакции, кроме реакций деструкции, подвергаются под действием катализатора различным дополнительным реакциям, и остаток, кипящий выше бензина, не является таким же, каким он был в исходном сырье. В некоторых случаях, когда исходное сырье содержит относительно высокие концентрации соединений азота или тяжелых металлов, качество рециркулирующего продукта может быть заметно улучшено сравнительно с исходным Сырьем, благодаря тому, что значительная часть нежелательных соединений может быть удалена за первый проход над катализатором. Но тем не менее рециркулирующий продукт не является таким жо хорошим сырьем для получения бензина, как природная нефть. Это указывает на некоторую конверсию остатка, кипящего выше 205° С, хотя такая конверсия не отражается на величине конверсии, как было указано выше. [c.144]

    Очищенное сырье поступает в сырьевой резервуар, где смешивается с рециркулирующей фракцией димеров пропилена. Сырьевой поток прокачивается через соответствующие теплообменники в реакторы с фосфорнокислотным катализатором. Продукт, выходящий из реактора, направляется в пропановую колонну -дд выделения пропана. Остаток из пропановой колонны поступает в колонну выделения димера пропилена (колонна II), возвращаемого в сырьевую емкость. Смесь тримера и тетрамера направляется в колонну III для выделения фракции 128—145° С (верхний продукт). Далее верхний продукт поступает в колонну IV для выделения целевой фракции, используемой в процессе оксосинтеза. Нижний продукт колонны III может быть использован как компонент бензина с высоким октановым числом или же направлен на выделение тетрамера, применяемого при получении моющих средств типа додецилбензолсульфоната. [c.105]

    Смесь природного газа и воздуха (или газа, содержащего кислород) нагревают в первой регенеративной массе. Часть сырья сгорает, а остаток каталитически конвертируется проходя зону конверсии с на ходящимся в ней никелевым катализатором. Продукты, вы ходящие из зоны конверсии проходят через каналы во второй регенеративной массе Направление газового потока через регенеративные массы [c.105]

    Нефтяной кокс представляет собой остаток термического крекинга мазутов и гудронов [161]. Кокс, образующийся при каталитическом крекинге, не поддается утилизации, так как он выжигается с поверхности катализатора. Разновидности кокса, получаемые при термических процессах, различаются по своему харак теру. Кокс, получаемый при устаревшем процессе коксования в кубах, — порист и хрупок кокс, получаемый при непрерывном и замедленном коксовании, — более мягок и маслянист в зависимости от времени контакта и температуры процесса. Кокс из куба периодического действия имеет серый цвет и при ударе издает металлический звук. Крекинговый кокс череп и сажист. Тяжелые нефтяные остатки, непригодные для использования в качестве котельного топлива, можно нагревать в печах специальной конструкции (печи Ноулза (Knowles) [162—164], с целью превращения в газ, бензин, мазут и кокс. [c.569]

    Под содержанием целых шариков в целевой фракции подразумевается (в вес. °/о) остаток анализируемой пробы катализатора после удаления из нее визуальным разбором осколков и шариков, имеющих явные трещины. Для определения содержания целых шариков навеску катализатора около 30 г, отобранную от целевой фракции методом квартования, рассыпают одним слоем на хорошо освещенную плоскость и сортируют. Отбирают осколки шариков и шарики, имеющие трещины. Шарики без трещин, имеющие только небольшие изъяны на поверхности, относят к целым. Отобранные целые и брако- [c.15]


Смотреть страницы где упоминается термин Катализаторы остатков: [c.268]    [c.501]    [c.196]    [c.245]    [c.454]    [c.246]    [c.55]    [c.61]    [c.170]    [c.144]    [c.152]    [c.185]    [c.201]    [c.202]    [c.71]    [c.261]   
Технология связанного азота Издание 2 (1974) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрообессеривание нефтяных остатков катализаторы

Катализатор отмывка остатков

Кинетика отмывки остатков катализатор

Хабибуллин, Г.А.Берг, А.С.Шмелев, А.В.Балаев, Исследование закономерностей дезактивации катализатора в процессе гидрообессеривании даасфальтированных вакуумных остатков

Шлак как катализатор при пиролизе остатков масел

Эффективность отмывки от остатков катализатора

ЯР- Кацобашвили. Деструктивная гидрогенизация тяжелых нефтяных остатков в дисперсном состоянии под невысоким давлением в циркулирующем потоке катализатора



© 2025 chem21.info Реклама на сайте