Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенол конденсация с ацетоном

    Дифенилолпропан впервые был получен конденсацией фенола с ацетоном . Эта реакция, представленная в общем виде уравнением [c.63]

    КОНДЕНСАЦИЯ ФЕНОЛА С АЦЕТОНОМ [c.63]

    Из всех описанных в этой главе способов синтеза дифенилолпропана в промышленности используют только конденсацию фенола с ацетоном в присутствии кислотных катализаторов (серной или соляной кислоты, безводного хлористого водорода, ионообменных смол).. Подробно эти процессы рассмотрены в соответствующих главах. [c.104]


    КОНДЕНСАЦИЯ ФЕНОЛА С АЦЕТОНОМ В ПРИСУТСТВИИ СОЛЯНОЙ КИСЛОТЫ или ХЛОРИСТОГО ВОДОРОДА [c.120]

    Как следует из гл. II, конденсация фенола с ацетоном протекает в присутствии практически любых агентов, дающих достаточно высокую концентрацию протонов. В промышленности, кроме серной кислоты (гл. III), широко используется другая сильная кислота — соляная или безводный хлористый водород. [c.120]

    Она подвергается различного рода превращениям (например, конденсируется с фенолом или ацетоном), давая целую гамму продуктов. При конденсации окиси мезитила с фенолом получается так называемое соединение Дианина. Дианин изучал эту реакцию в кислой среде при условиях, обычно используемых в синтезе дифенилолпропана, и нашел, что образуется соединение, которому он приписал структуру I. Однако Бэкер , более детально исследовавший это соединение, доказал, что на самом деле оно имеет формулу П и является 2,2,4-триметил-4-(4 -оксифенил)-хроманом  [c.72]

    КОНДЕНСАЦИЯ ФЕНОЛА С АЦЕТОНОМ В ПРИСУТСТВИИ СЕРНОЙ кислоты [c.108]

    Все перечисленные ранее соединения, испытанные в качестве катализаторов для конденсации фенола с ацетоном, обладают одним общим свойством они либо прямо дают протоны при диссоциации, либо могут образовывать комплексы и освобождать протоны. [c.65]

    Таким образом, обзор исследований катализаторов конденсации ацетона и фенола показывает, что наиболее перспективны протоген-ные соединения. Но одного присутствия протонов недостаточно значительную роль играют подбор параметров реакции и введение промоторов. [c.65]

    Таким образом, синтез на основе фенола и изопропенилацетата в условиях, описанных выше, протекает с низким выходом продукта и потому этот способ получения дифенилолпропана не может конкурировать с более эффективным процессом конденсации фенола с ацетоном. [c.101]

    Указанные недостатки сернистых соединений побуждали исследователей к поискам других промоторов. Но до настоящего времени предложены дополнительно только селенистые и теллуристые соли различных металлов , которые не нашли практического применения. Отмечается также, что применения промоторов можно вообще избежать, если конденсацию фенола с ацетоном проводить в среде минеральной кислоты при облучении ультрафиолетовыми или Р-лу-чами . При этом сохраняются высокая скорость процесса и удовлетворительный выход продукта. [c.67]

    Итак, в кислой среде синтез дифенилолпропана, по-видимому, протекает в две ступени конденсация фенола с ацетоном с отщеплением воды и присоединение карбкатиона п-изопропенилфенола к фенолу. Наиболее медленной стадией, определяющей скорость реакции, является первая. Окраска реакционной массы объясняется присутствием карбкатиона п-изопропенилфенола. [c.90]


    Разделение продуктов реакции может быть осуществлено так же (см. гл. IV), как в случае синтеза дифенилолпропана конденсацией фенола с ацетоном. При использовании катализаторной системы фтористый бор -ь ортофосфорная кислота сначала реакционную смесь нейтрализуют содой или гидроокисью кальция, а затем с паром отгоняют фенол . Соединения фтористого бора с уксусной кислотой и с диэтиловым эфиром можно отогнать вместе с фенолом в вакууме . Применим также способ выделения дифенилолпропана из реакционной массы в виде кристаллического аддукта с фенолом, который разрушают методами, описанными в гл. IV. Иногда реакционную массу разбавляют водой и отделяют водный слой, содержащий катализатор, от органического, который состоит из фенола, дифенилолпропана и побочных продуктов. Затем из органического слоя отгоняют фенол. [c.97]

    Однако попытки проведения такого синтеза показали что реакция протекает очень медленно и с невысоким выходом дифенилолпропана. В присутствии 72,5%-ной серной кислоты и этилмеркаптана за длительное время реакции (несколько дней) выход дифенилолпропана составил всего 31,6% (в расчете на гидроперекись), а без добавления этилмеркаптана дифенилолпропан не был получен совсем. При использовании безводного хлористого водорода с добавкой этилмеркаптана за 310 ч выход дифенилолпропана не превысил 35,2%. Невысокий выход дифенилолпропана, по-видимому, объясняется тем, что образование его протекает все-таки в две стадии разложение гидроперекиси на фенол и ацетон и последующая конденсация их в дифенилолпропан  [c.102]

    Из уравнений видно, что при разложении гидроперекиси образуются фенол и ацетон в мольном отношении 1 1, т. е. создаются неблагоприятные условия для последующей реакции их конденсации — успешному протеканию ее способствует стехиометрическое соотношение компонентов (2 1) или лучше избыток фенола. Для поддержания стехиометрического соотношения фенол ацетон предложены два способа — отгонка половины ацетона и добавление необходимого количества фенола. [c.102]

    Особое значение эпихлоргидрин имеет для получения так называемых эпоксидных смол. Их получают взаимодействием эпихлоргидрина с двухатомными фенолами, особенно с 4,4 -ди-оксидифенилпропаном. Это соединение, известное нод названием диан , получают конденсацией ацетона и фенола в присутствии концентрированной серной кислоты. В щелочной среде из диана и эпихлоргидрина образуется диандиглицидный эфир, присоединяющий к себе еще молекулы диана с одновременным разрушением эпоксидного кольца. Таким путем получают полиэфир со степенью полимеризации, достигающей 15 [8]  [c.176]

    Из вышесказанного следует, что конденсация фенола с ацетоном протекает наиболее успешно, если концентрация серной кислоты не превышает 76,0%. Оптимальные температуру и время реакции выбирают в зависимости от принятой концентрации кислоты, но обычно температура не превышает 40 °С, а время реакции 8 ч. Увеличению выхода дифенилолпропана и улучшению его качества способствует повышенное мольное соотношение фенола к ацетону. Однако в промышленности фенол и ацетон берут в стехиометрическом соотношении, так как при большом избытке фенола усложняется разделение продуктов реакции. [c.111]

    Технологическая схема синтеза дифенилолпропана, выделения его из реакционной массы и очистки показана на рис. 8. Конденсацию фенола с ацетоном осуществляют в стальных эмалированных аппаратах 1 с мешалками (на схеме показан один). Температуру реакционной массы поддерживают в необходимых пределах, подавая воду в рубашку аппарата. Чрезвычайно важным является хорошее размешивание массы — иногда можно повысить выход дифенилолпропана только за счет интенсификации размешивания и правильного выбора конструкции мешалки. Обычно используют якорные мешалки с числом оборотов —70 в минуту. Для проведения синтеза непрерывным способом предложены реакторы горизонтального типа с винтообразными мешалками. [c.116]

    При проведении конденсации фенола с ацетоном в присутствии соляной кислоты или хлористого водорода исследовались самые различные промоторы. Действие их неодинаково. Например свободная и однохлористая сера, тиосульфат натрия и т/зет-бутил-меркаптан являются малоэффективными. Данные по действию сероводорода разноречивы по-видимому, он ускоряет реакцию, однако в значительно меньшей степени, чем при использовании серной кислоты как конденсирующего агента. Селенистая и теллуристая кислоты и их соли ускоряют процесс ) , но выход дифенилолпропана не превышает 80—90%. Вероятно, выход можно увеличить, если повысить мольное отношение фенол ацетон в исходной смеси или количество катализатора, г- [c.123]

    КОНДЕНСАЦИЯ ФЕНОЛА С АЦЕТОНОМ НА ИОНООБМЕННЫХ СМОЛАХ [c.142]

    Конденсация фенола с ацетоном ускоряется в присутствии протонов, но введение минеральных кислот осложняет процесс, поэтому представляет интерес осуществить синтез, используя твердые протогенные вещества. Такими веществами являются ионообменные смолы. [c.142]


    КОНДЕНСАЦИЯ ФЕНОЛА С АЦЕТОНОМ НА ИОНИТАХ [c.146]

    Впервые дифенилолпропан был синтезирован русским ученым А. П. Дианиным конденсацией фенола с ацетоном в присутствии кислотного катализатора . В промышленности дифенилолпропан начала выпускать в 1923 г. германская фирма Kurt Albert он использовался для получения синтетических лаковых смол альберто-лей и дюрофеноБ . Однако значительный рост его производства относится только к 50-м годам, когда большое распространение в различных областях промышленности получили эпоксидные полимеры, сырьем для синтеза которых явились дифенилолпропан и эпихлоргидрин. С тех пор дифенилолпропан находит все более широкое применение в химической промышленности в качестве сырья, для производства ряда ценнейших химических продуктов 1 В ближайшие годы производство его должно значительно возрасти это видно из следующих данных (в тыс. т в год)  [c.5]

    Кроме того, Браун провел ряд синтезов различных дифенолов, и в некоторых случаях ему также удалось выделить в качестве промежуточных продуктов алкенилароматические оксисоединения. Так, при конденсации 2-метилциклогексанона с фенолом из продуктов реакции помимо дифенола был выделен метилциклогексенилфенол, а при конденсации циклогексанона с крезолом — циклогексенил-крезол. То, что в указанных синтезах удается выделить промежуточные продукты, а при конденсации фенола с ацетоном это сделать нельзя, Браун объясняет тем, что в первом случае из-за стерических препятствий реакция не может полностью протекать до дифенола. На основании этих опытов Браун предположил, что при конденсации фенолов с кетонами образуются промежуточные продукты — третичные карбинолы, которые вследствие нестабильности в присутствии кислот отщепляют воду и превращаются в алкенилзамещен-ные оксисоединения последние далее реагируют с фенолом, превра- [c.80]

    В настоящее время всеобщее распространение в промышленности различных стран получил способ производства ди( нилолпропана путем конденсации фенола с ацетоном в присутствии кислотных катализаторов (хлористый водород, соляная и серная кислоты). Однако большим недостатком этих способов является высокая агрессивность сред, что особенно относится к использованию хлористого водорода отсюда проистекает трудность подбора соответствующего коррозионностойкого материала для изготовления аппаратуры и трубопроводов. Поэтому в течение ряда лет привлекают внимание бескислотные способы получения продукта. Так, в СССР разработан способ получения дифенилолпропана конденсацией фенола с ацетоном в присутствии ионообменной смолы как катализатора. [c.6]

    УВ качестве катализатора для конденсации фенола с ацетоном предложены также четыреххлористый кремний и трихлорсилан . Условия синтеза — мольное соотношение фенол ацетон — 4 1, температура 30 °С, катализатор 5ЬС14 с промотором (тиогликолевая кислота, пропилен-бис-тиогликолевая кислота), время реакции 7,5 ч. Выход дифенилолпропана достигает на взятый ацетон 90—97%, а на прореагировавший фенол 90—95 %  [c.64]

    Имеющиеся в литературе данные о тепловом эффекте очень противоречивы — от 91 до 52 ккал на 1 кг дифенилолпропана. Поэтому авторы этой книги специально определяли тепловой эффект при конденсации фенола с ацетоном в присутствии концентрированной соляной кислоты. Он составил 98 ккал1кг. Выделяющееся тепло приходится отводить для поддержания заданной температуры реакции. [c.68]

    Первую попытку объяснить механизмТтонденсации фенола с ацетоном сделал еще Дианин . На основании того, что в реакцию конденсации с кетонами вступают лишь фенолы, но не их эфиры, он пред- [c.75]

    Из двух ступеней реакции (конденсация ацетона с фенолом и присоединение карбкатиона п-изопропенилфенола к фенолу) стадией, определяющей скорость процесса, Шнелл и Кримм считают первую ступень, однако они не приводят в доказательство каких-либо кинетических измерений. Поэтому представляет интерес рас- [c.83]

    Рустамов с сотр. исследовали кинетику конденсации фенола с ацетоном в присутствии серной, соляной и ортофосфорной кислот и сильнокислотных ионообменных смол с сульфогруппами (КУ-1 и КУ-2). Они показали, что реакция является необратимой. Энергия активации в случае использования серной кислоты и ионообменных смол одинакова (15,6 ккал1моль), что говорит об идентичности механизма реакции и одинаковой лимитирующей стадии при гомогенном и гетерогенном процессах. Высокая энергия активации указывает, чта катализ протекает в кинетической области. По активности катализаторы располаг аются в ряд  [c.87]

    Результаты рассмотр ных выше кинетических измерений несколько противоречивы. Однако большинство исследователей приходит к выводу, что при стехиометрическом соотношении фенола и ацетона реакция имеет первый порядок по фенолу и ацетону и что лимитирующей стадией является конденсация одной молекулы фенола и одной молекулы ацетона с образованием промежуточного карбинола. Прямопропорцинальная зависимость скорости от концентрации кислоты (или протонов) может свидетельствовать о том, что конденсация начинается с присоединения протона. Последующие стадии, вероятно, не лимитируют процесс. Это указывает на то, что они являются быстрыми ионными реакциями или что их промежуточные продукты более реакционноспособны, чем исходные веществу. [c.88]

    Этим опытом была доказана высокая скорость реакции образова ния дифенилолпропана из фенола и пропилен-бис-тиогликолево1 кислоты. О более высокой скорости взаимодействия фенола с мер каптолами, чем при конденсации фенола с ацетоном, сообщалоо также в работе . [c.92]

    При конденсации фенола с ацетоном выделяется вода, которая снижает скорость реакции. Поэтому был проявлен большой интерес к способам получения дифенилолпропана, протекающим без выделения воды взаимодействие фенола с алленом или метилацетиленом, с п- и о-изопропенилфенолами, с изопропенилацетатом, с бис-(органо-тио)-алканами, с галогенолефинами. Имеются также сообщения о получении дифенилолпропана из других видов сырья (на основе гидроперекиси изопропилбензола и др.). [c.94]

    Из двухстадийного механизма образования дифенилолпропана следует, что в начале процесса целесообразно создавать условия, благоприятные для разложения гидроперекиси, а затем — для конденсации фенола с ацетоном. В связи с этим в первый период реакции поддерживают более низкую температуру путем интенсивного перемешивания и охлаждения, а потом ее повышают и вводят сернистое соединение, ускоряюш,ее образование дифенилолпропана " . [c.103]

    Мольное соотношение фенол ацетон заметно влияет на протекание реакции конденсации Экспериментальные данные (табл. 12) показывают, что ГНЬвышение соотношения фенола к ацетону до 3,7 увеличивает выход дифенилолпропана до 86%, а дальнейшее возрастание соотношения до 4 не дает заметного эффекта. Однако в случае использования промоторов, например этилмеркаптана более высокое мольное соотношение (10 1) значительно сокращает время реакции и повышает выход дифенилолпропана до 98%. Увеличение мольного соотношения благоприятно влияет не только на время реакции и выход, но и на чистоту дифенилолпропана - [c.121]

    И, наконец, кристаллизацию можно проводить после нейтрализации соляной кислоты. Для этого по патенту реакционную массу, полученную в реакторе 2 (рис. 12) конденсацией фенола с ацетоном в присутствии НС1 и меркаптана, направляют в аппарат 3, куда вводят также воду и разбавленный раствор NaOH (или другого щелочного агента). Полученная смесь расслаивается при 50—70 °С в аппарате 4 на фенольную фазу (содержащую дифенилолпропан, побочные продукты и немного воды) и водную (содержащую около 10% фенола, растворимые в воде побочные продукты и Na l). Из фенольной фазы в аппарате 5 кристаллизуется аддукт, который отделяется от маточного раствора в аппарате 6. [c.132]


Смотреть страницы где упоминается термин Фенол конденсация с ацетоном: [c.209]    [c.39]    [c.2]    [c.64]    [c.67]    [c.69]    [c.81]    [c.85]    [c.99]    [c.148]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.770 ]

Лабораторные работы по химии и технологии полимерных материалов (1965) -- [ c.66 , c.67 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.666 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетон конденсация



© 2025 chem21.info Реклама на сайте