Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроды восстановительные

    Более того, метод ЭКП позволяет использовать одно средство (электрод), восстановительную или окислительную силу которого можно непрерывно варьировать в широком диапазоне. Поэтому электрохимические реакции можно проводить с селек- [c.41]

    Более точно стандартным называется тот потенциал, который данная окислительно-восстановиТельная система имеет при активности, равной единице всех компонентов, участвующих в окислительно-восстановительном процессе на электроде. В этом случае 1п ([Ок]/[Вос]) = О и = 0. [c.345]


    Стандартные потенциалы дают представления о возможном направлении окислительно-восстановительных химических реакций, однако в реальных условиях это направление может быть иным по следующим причинам. Окислительно-восстановительные системы, в зависимости от скорости реакций, протекающих на электродах, подразделяются на обратимые и необратимые. Стандартные потенциалы обратимых систем измерены непосредственно описанным выше способом, тогда как стандартные потенциалы необратимых систем в большинстве случаев находят путем термодинамических расчетов. Вследствие этого на практике их величины оказываются иными, так как на них оказывают большое влияние многие факторы. Например, для необратимых систем не наблюдается закономерного изменения потенциала в соответствии с изменением концентрации компонентов системы, и расчеты, проведенные с использованием стандартных окислительных потенциалов и концентраций компонентов, носят скорее иллюстративный характер, чем отвечают действительным данным. Поэтому гораздо большее практическое значение имеют формальные (реальные) потенциалы окислительно-восстановительных систем. Формальные потенциалы ( ф) находят, измерением э. д. с. гальванического элемента, в котором начальные концентрации компонентов окисли- [c.350]

    В общем случае, если в окислительно-восстановительной реакции на электроде участвуют наряду с двумя формами окислительно-восстановительной пары другие компоненты, которые при -этом не меняют свою степень окисления [c.352]

    Принимая во внимание существование перенапряжения, при вычислении потенциала разложения надо учитывать пе только величины окислительно-восстановительных потенциалов пар, образующихся на аноде ( д) и на катоде ( к), но и соответствующие перенапряжения на указанных электродах (т)а и tik). Формула для вычисления потенциала разложения принимает вид  [c.431]

    Окислительно-восстановительные, или редокси-электроды [c.169]

    Если электроды расположены в ряду стандартных, электродных потенциалов близко друг к др>гу, как, например, 5и2+, 5гг + н Си+, Си +, то константа равновесия редокси-реакции мало отличается от единицы, и при смеше[1ии раство )ов, содержащих такие редокси-пары, окислительно-восстановительное равновесие смещается не очень заметно. [c.183]

    Для многих окислительно-восстановительных реакций (особенно с участием сложных органических соединений) равновесный потенциал непосредственно измерить невозможно. В отличие от потенциала кислородного электрода его не всегда удается и рассчитать. Поэтому для характеристики кинетики окислительно-восстановительных реакций часто используют не величину поляризации, а непосредственное значение электродного потенциала под током. [c.429]


    Адсорбция реагирующих частиц поверхностью электрода не является обязательным условием протекания всех электрохимических редокси-реакций. Однако обычно она играет важную роль, и без ее учета теория окислительно-восстановительных процессов не может быть полной. [c.445]

    Если пространственно разделить процесс окисления восстановителя II процесс восстановления окислителя, можно получить электрический ток. В этом случае окислительно-восстановительные реакции осуществляются на электродах, а химическая энергия непосредственно превращается в электрическую. Теоретически для получения электрической энергии можно применить любую окислительно-восстановительную реакцию. [c.222]

    За счет окислительно-восстановительной реакции по внешней цепи (металлический проводник) течет электрический ток от цинкового электрода к медному, а по внутренней цепи (трубка с электролитом) движутся ионы 504 Цинковый электрод постепенно растворяется, а на медном выделяется металлическая медь. [c.223]

    При электролизе на катоде протекает разряд катионов, т. е. в о с с т а о в и т е л ь н ы й процесс, а на аноде — разряд анионов, т. е. процесс окислительный. Следовательно, любую разность потенциалов между электродами можно рассматривать как потенциал данного окислительно-восстановительного процесса. Следовательно, если этот процесс протекает по схеме [c.250]

    Имеется окислительно-восстановительная гальваническая цепь, в которой концентрация соответствующих ионов у электродов равна 1 н  [c.261]

    Окислительно-восстановительные электроды и их потенциалы 553 [c.553]

    Окислительно-восстановительные электроды и нх потенциалы [c.553]

    Таким образом, рассмотренный электрод участвует всегда в суммарной окислительно-восстановительной реакции, две половины которой (электрохимические реакции) протекают на двух электродах и являются одна — окислительной, другая — восстановительной реакцией. [c.554]

    Название электродов типа Ре +, Pe +lPt и элементов с такими электродами окислительно-восстановительными понятно из всего выше сказанного. Однако следует подчеркнуть, что всякая электрохимическая реакция включает выделение или потребление электронов и является окислительно-восстановительной на электродах ионы всегда изменяют заряд. Так, в элементе Даниэля — Якоби [c.554]

    Очевидно, термин окислительно-восстановительный (элемент, электрод, потенциал) может быть отнесен к любому случаю, а [c.554]

    В последние годы большое внимание уделяется изучению электрохимических процессов, которые проходят с участием одного электрона и сопровождаются димеризацией образующихся радикалов. Примером такой восстановительной димеризации на" электроде является получение пинакона из ацетона  [c.634]

    В табл. 9 приложения для ряда электрохимических систем приведены значения стандартных электродных потенциалов ф°, измеренных по отношению к стандартному водородному электроду. Чем меньше (в алгебраическом смысле) значение ср°, тем сильнее выражены восстановительные свойства соответствующей электрохимической системы напротив, чем больше значение ц>°, тем более сильными окислительными свойствами характеризуется система. [c.180]

    При замыкании внешней цепи электроны перемещаются от цинкового электрода к медному. Поэтому равновесия на фазовых границах нарушаются происходит направленный переход ионов цинка из металла в раствор, ионов меди — из раствора в металл, электронов — от цинка к меди протекает окислительно-восстановительная реакция. [c.278]

    Электродные потенциалы. Каждая окислительно-восстановительная реакция слагается из полуреакций окисления и восстановления. Когда реакция протекает в гальваническом элементе или осуществляется путем электролиза, то каждая полуреакция протекает на соответствующем электроде поэтому полуреакции называют также электродными процессами. [c.279]

    Стандартные потенциалы металлов ф приведены в табл. 6 в порядке возрастания их алгебраической величины, образуя так называемый ряд напряжений металлов. Если стандартный потенциал металла имеет знак минус, это означает, что металл в паре со стандартным водородным электродом выполняет функцию отрицательного электрода, избыточные электроны которого переходят к ионам Н . При знаке плюс на металле донором электронов являются молекулы водорода, адсорбированные на поверхности платинового электрода. Электроны, переходя на металлический электрод, притягивают из раствора катионы металла, которые, концентрируясь и разряжаясь на его поверхности, сообщают ему положительный заряд. С увеличением алгебраического значения стандартного потенциала металла уменьшаются восстановительные свойства его атомов и увеличиваются окислительные свойства образующихся при этом катионов. Так, цинк по своим восстановительным свойствам превосходит водород, а ионы Н по своим [c.159]

    Разновидностью химических элементов являются так называемые редокс-элементы, или окислительно-восстановительные элементы. Окислительно-восстановительный элемент состоит из двух окислительно-восстановительных электродов, Окислительно-восстановительный электрод представляет собой инертный металл (Р1, Аи, 1г...), погруженный в раствор с определенной концентрацией окисленной и восстановленной форм одного и того же вещества. Например, одним из электродов окислительно-восстановительного элемента может служить платиновая пластинка, погруженная в раствор, содержащий ионы двух- и трехвалентного железа, другим — платиновая пластинка в растворе, содержащем ионы двух- и четырехвалентного олова. Согласно протекающей в таком элементе реакции [c.291]


    Величина ф° равна разности потенциалов, отвечающих исследуемому электроду и стандартному водородному электроду и соответствующих контактным потенциалам. Знак стандартного потенциала совпадает со знаком его заряда по отношению к стандартному водородному электроду. Если исследуемый электрод по отношению к стандартному водородному электроду отрицателен, то идет окислительный электродный процесс и ф <0, а электродныр процесс положительного водородного электрода восстановительный. Если электрод 110 отношению к стандартному водородному электроду по-ложи гелен, то идет восстанонительный электродный процесс и ф°>0, а электродный процесс отрицательного водородного электрода окислительный. [c.128]

    Стационарный потенциал ТЮ1 дд в 2 п. НзЗО при 20° С составляет 0,3 в. Характер катодной поляризационной кривой, полученной на электроде из ТЮх дд по-тенциостатическим методом, сильно зависит от скорости съемки (рис. 3). Это связано с протеканием на электроде восстановительной реакции [c.22]

    Причина подобного несоответствия между предположением,, основанным на величинах стандартных потенциалов, и опытом объясняется, очевидно, тем, что здесь вследствие малой растворимости ul сильно понижается концентрация Си+, и поэтому значительно изменяется значение потенциала пары Си Си+. Таким образом, в расчете следует пользоваться стандартным потенциалом пары u V uI, равным -)-0,86 в, а не Е° пары uV u+. Согласно сказанному, окислительно-восстановительной реакцией иа электроде является u +-f 1 + е-> СиЦ, для которой уравнение Нернста записывается в следующем виде  [c.354]

    Если анод сделан не из платины, а из какого-либо другого металла, то он тоже может принимать участие в окислительно-восстановительных процессах, происходящих при электролизе. Так, выше было указано, что при электролизе раствора USO4 с платиновым анодом на нем молекулы воды окисляются до Ог- Если платиновый анод заменить медным, то при электролизе окисляться на нем будут уже не молекулы воды, а материал самого электрода, т. е. металлическая медь, отдающая электроны еще легче, чем молекулы воды. Следовательно, анод будет растворяться с образованием Си +-ионов  [c.424]

    При прохождении через раствор электрического тока на электродах выделяются продукты электролиза. Эти продукты, присутствуя совместно с ионами, из которых они образовались, представляют собой окислительно-восстановительные пары. Например, пр1т электролизе раствора СиСЬ у катода образуется пара Си +/Си, а анода С12/2С1 . Точно так же при электролизе Си304 у катода [c.426]

    Причиной поляризации может являться не только возникновение на электродах новых окислительно-восстановительных пар, но и изменение концентраций ионов при электролизе. Например, при электролизе раствора Си304 с медными электродами на аноде растворяется, а на катоде медь осаждается. Следовательно, на [c.428]

    При окислительно-восстановительных процессах диффузионное неренапряжение обычно велико и часто составляет значительную, а иногда даже и основную долю всего смещения потенциала электрода под током. Поскольку роль концентрационного перенапряжения в редокси-процесоах уже обсуждалась ранее, здесь рассматриваются только химическое перенапряжение и активационная поляризация. При этом предполагается, что диффузионное перенапряжение или учтено, или устранено. [c.429]

    Природа электрода, так же как и сгепень развития его поверхности, играет важную роль в кинетике процессов электрохимического восстановления и окисления особенно отчетливо это проявляется в случае сложных окислительно-восстановительных реакций. Например, при восстановлении азотной кислоты на губчатой меди получается почти исключительно аммиак, а на амальгамированном свинце — преимущественно гидроксиламин. Другим примером влияния материала электрода на процесс электровосстановления может служить реакция восстановления ацетона. В результате этого процесса получаются два основных конечных продукта — изопропиловый спирт СН3СНСН3 и пннакон (СНзСОНСНз)2. [c.432]

    В табл. XX, 2 приведены значения некоторых стандартных окислительно-восстановительных потенциалов. Правн. 1с) знаков для них вытекает из рассмотренных раньше общих положений. Соединив какой-либо окислительно-восстановите.чьньп а.шктрод со стандартным водородным и поместив последний лeвil, э.д.с. составленного таким образом элемента считают положительной, и следовательно, потенциал правого электрода положителен, если электрический ток в элементе [c.555]

    Окислительно-восстановительные потенциалы измеряют с помощью ин-аифферентного платинового электрода. Так как в стандартном водородном электроде ток также подводится платиной, то электродные потенциалы этого типа не включают гальвани-потенциалов MeilMej. Если же при измерении окислительно-восстановительного потенциала использовать электрод из другого индифферентного металла, например золота, то электродный потенциал включит в себя гальвани-потенциал пфли контакта Pt/Au. При этом измеряемый суммарный электродный окислительно-восстановительный потенциал относительно стандартного водородного электрода остается неизменным, так как оп соответствует тому же процессу перехода электрона от одного иона к другому. При замене платины золотом скачок на границе электрод раствор изменится так, что дополнительный гальвани-потенциал Pt[Au будет компенсирован. [c.556]

    Окислительно-восстановительные электроды могут быть составлены и на основе органических окислительно-восстанови-тельных систем. Таких систем довольно много, но особый интерес представляет хингидронный электрод. Так называют платиновый электрод, погруженный в раствор хингидрона [молекулярное соединение хинона и гидрохинона —С6Н4О2 СбН4(ОН)2, которое в растворе частично диссоциирует на хинон и гидрохинон]. [c.556]

    В гл. XX, 9 были рассмотрены электроды из Плагород-ного металла, которые обмениваются электронами с ионами переменной валентности в растворе (Ре ->Ре + + е, Sn + + 2 >-)-Sn и г. д.). При этом на электроде устанавливается определенный окислительно-восстановительный потенциал. [c.583]

    Рассмотрим метод расчета равновесий ионных окнслите. 1Ьно-восстановительных реакций в растворе. Если мы хотим выяснить направление реакции Ре2+ + Сг + Ре + + Сг2+, то составляем элемент из двух окислительно-восстановительных э.пектро-дов. В первом приближении используем стандартные ноген циалы этих электродов- из табл. XX, 2 (см. стр. 555), причем для левого электрода берем величину его Е° с собственным знаком, а для правого электрода — его стандартный потенциал с обратным знаком. Если взятая таким образом сумма электрод  [c.583]

    В химической промышленности платина применяется для изго-топления коррозиониостойких детален аппаратуры. Платиновые аноды используются в ряде электрохимических производств (производство надсерной кислоты, перхлоратов, перборатов). Широко применяется платина как катализатор, особенно при проведении окислительно-восстановительных реакций. Она представляет собой первый, известный еще с начала XIX века гетерогенный катализатор. В настоящее время платиновые катализаторы применяются в производстве серной и азотной кислот, при очистке водорода от нрнмссей кислорода и в ряде других процессов. Из платины изготовляют нагревательные элементы электрических печей и приборы для измерения температуры (термометры сопротивления и термопары). В высокодисперспом состоянии платина растворяет значительные количества водорода и кислорода. На ее способности растворять водород основано применение платины для изготовления водородного электрода (см. стр. 281). [c.698]

    Для определения стандартного потенциала какого-лйбо металла можно воспользоваться гальваническим элементом — системой из двух электродов, одним из которых служит нормальный водородный электрод, а другим — электрод испытуемого металла, погруженный в раствор его соли с активностью катиона 1 моль л . Электродвижущая сила такого гальванического элемента характеризует окислительно-восстановительную способность металла относительно стандартного водородного электрода и представляет собой, таким образом, его стандартный потенциал. [c.159]

    Электролизом называются окислительно-восстановительные реакции, протекающие на электродах, лр.и,, аролождейш, постоянного электрического тока через раствор электролита или его расплав. При этом на катоде происходит процесс восстановления — присоединения окислителем электронов из электрической цепи, а на аноде — окислительный процесс переход электронов от восстановителя в электрическую цепь. Таким образом, в др,оц.ес.сах, эле ролиза каТ6ТТГыг1олняет функцию,,,.а.о.с.сНишя1.еля.,-.. лителя. 7 [c.171]

    Все электроды делятся на три типа электроды первого рода, обратимые по отношению к катиону электроды второго рода, обратимые по отношению к аниону и окислительно-восстановительные электроды. Примером электрода первого рода может служить любая металлическая пластинка, погруженг ая в раствор, содержащий катионы, одноименные с материалом э.лектрода, или платиновая пластинка, насыщеш1ая водородом и опущенная в раствор кислоты. К электродам первого рода относятся водородный, хингидронпый и стеклянный электроды. [c.293]


Смотреть страницы где упоминается термин Электроды восстановительные: [c.479]    [c.170]    [c.316]    [c.223]    [c.555]    [c.584]    [c.304]    [c.622]   
Электродные процессы в органической химии (1961) -- [ c.14 ]




ПОИСК







© 2025 chem21.info Реклама на сайте