Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сила идеальная

    Если частицы газа отдалены друг от друга иа такое расстояние, что силами взаимодействия между ними и частью объема, который они занимают, можно пренебречь, то такое состояние газа называется идеальным. Такому состоянию при нормальных условиях соответствуют все одноатомные газы (гелий, аргон, пары металлов и т. д.), при сравнительно высоких температурах (100—200° С) —двухатомные газы (Нг. Ог, N2 и т. д.), и при некотором разрежении или достаточно высокой температуре (порядка 300—400° и выше)—трехатомные и четырехатомные газы (СО2, NHз, СН4 и т. д.). [c.44]


    В то время как при адиабатическом расширении любого газа, происходящем с совершением внешней работы, его температура сильно меняется, температура идеального газа при расширении без совершения внешней работы остается постоянной в течение всего процесса. Однако опыт показывает, что при адиабатическом расширении без совершения внешней работы температура реальных газов хотя и незначительна, но снижается снижение его происходит за счет работы внутримолекулярных, так называемых ван-дер-ваальсовых, сил. Это явление носит название холодильного эффекта, для подсчета которого существует ряд эмпирических формул  [c.74]

    Напомним, что в силу идеальности перемешивания л<идкости На тарелке концентрация 0/.,, постоянна по высоте барботажного слоя. Количество НКК, перешедшего из жидкости в пар во всем слое, можно получить интегрированием (1.2.45)  [c.22]

    Каждое из остальных упомянутых выше искажений также может вызывать отклонения от простой симметрии окружения, но мы не будем рассматривать этот вопрос здесь более подробно, а только укажем, что вследствие действия этих разнообразных сил идеальная кубическая симметрия встречается у молекул очень редко. [c.246]

    Величина Ф (t)dt есть также вероятность того, что частица, в данный момент времени уже находящаяся в первой ступени каскада, пробудет в первых к ступенях отрезок времени, заключенный между t и 1 + dt (независимо от длительности ее пребывания в системе до рассматриваемого момента). Это ясно хотя бы из того, что в силу идеального смешения все частицы в реакторе совершенно равноправны и с одинаковой вероятностью могут оказаться в любой точке реактора, в том числе и на выходе из него. Эта вероятность не зависит от продолжительности нахождения частицы в системе. Иными словами, все частицы, находящиеся в реакторе в любой момент времени, будут вести себя совершенно так же, как если бы они были только что введены в реактор. [c.25]

    Изменение внутренней энергии системы представляет собой изменение а) кинетической энергии поступательного и вращательного движения молекул, б) сил притяжения и отталкивания между молекулами, в) внутримолекулярной вибрации и вращения отдельных атомов и электронов в молекуле и т. п. В случае идеальных газовых систем, при чисто физических процессах, изменение внутренней энергии состоит лишь в изменении кинетической энергии молекулярного движения, т. е. в изменении температуры газа. [c.67]

    Примерно в то же самое время анализом поведения газов занимались шотландский физик Джеймс Кларк Максвелл (1831 — 1879) и австрийский физик Людвиг Больцман (1844—1906). Эти ученые установили следующее. Если предположить, что газы представляют собой совокупность большого числа беспорядочно движущихся частиц (кинетическая теория газов), то закон Бойля выполняется в том случае, если, во-первых, между молекулами газа не действуют силы притяжения и, во-вторых, молекулы газа имеют нулевые размеры. Газы, отвечающие этим требованиям, были названы идеальными газами. [c.120]


    Задача впервые решена М. И. Шараповым (а. с. 400621), сознательно использовавшим законы увеличения степени идеальности системы. Изобретение — в силу исключительной простоты — без затруднений внедрили сначала на Магнитогорском металлургическом комбинате, а затем и на многих других предприятиях. [c.67]

    Сформулируем ИКР, идеальный конечный результат,— продолжала слушательница.— Идеально, если штуковина со страшной силой мчится сквозь лед. Как будто льда вовсе нет. [c.135]

    Силы взаимодействия между ионами отсутствуют, и растворы электролитов ведут себя подобно идеальным газовым системам. Это положение авторами теории электролитической диссоциации прямо не высказывалось, но оно ежит в основе всех ее количественных соотношений. [c.36]

    Поведение реального физического процесса в данных условиях может совпадать с поведением идеального процесса, а может и не совпадать с ним. Так, при движении твердых частиц в жидкости при захлебывании наблюдается нарушение только условия стационарности. Поведение потока в данном случае может быть описано в рамках принятой нами модели идеального дисперсного потока, но с использованием нестационарных уравнений. При движении пузырей в условиях, близких к захлебыванию, в среднем поток остается стационарным (расходы фаз не изменяются), но нарушаются условия отсутствия коалесценции и монодисперсности частиц, что приводит к существенным изменениям картины течения и соответственно к кризису принятой модели идеального дисперсного потока. В частности, существенно изменяется сила межфазного взаимодействия, появляется значительная неравномерность распределения пузырей по сечению аппарата, а движение фаз, по-видимому, уже не может быть удовлетворительно описано с помощью двухскоростной модели. [c.96]

    Третий постулат теории Аррениуса определяет растворы электролитов как идеальные системы. В соответствии с этим постулатом следует предположить, что ионы в растворах расположены беспорядочно и силы взаимодействия между ними [c.82]

    Здесь мы пренебрегаем внутренней энергией молекул и действующими между ними силами. Это означает, что мы рассматриваем газ как идеальный и одноатомный. Учет внутренней энергии не усложняет вопроса, но учет сил взаимодействия усложняет его (см. разд. IX.5). [c.114]

    Реальные газы, состоящие из молекул конечного объема, между которыми действуют силы взаимного притяжения, отклоняются от идеальных в большей или меньшей степени. С достаточной точностью можно считать, что при небольших давлениях и высоких температурах их свойства одинаковы со свойствами идеального газа. [c.21]

    Если теперь взять идеальный газ (без межмолекулярных сил), помещенный во внешнее силовое поле, то потенциальная энергия будет просто равна сумме индивидуальных потенциальных энергий каждой молекулы, и каноническое распределение можно выразить произведением [c.179]

    Если теперь рассмотреть систему идеальных молекул, в которой внутренние силы равны нулю (т. е. все Р (т) — 0), тогда останутся только силы Pxi> Рур - г ) вызванные внешними полями и стенками. Если нет внешних полей, то остается лишь нормальное давление, оказываемое стежками [c.181]

    В таком цикле Карно гальванический элемент при известной температуре поглощает теплоту нагревателя и производит электрическую работу. Последняя может быть затрачена на поднятие тяжести и таким образом сохранена как потенциальная механическая энергия. Заставляя затем элемент работать в условия идеальной тепловой изоляции, можно адиабатно понизить (или г.о-высить) его температуру, после чего, используя сохраненную работу, можно провести химическую реакцию в элементе в обратном направлении, при ином значении электродвижущей силы, а затем адиабатно довести элемент до первоначальной температуры. [c.81]

    По Ван-дер-Ваальсу (1873 г.), в реальных газах, в отличие от идеальных, возникают силы межмолекулярного взаимодействия и молекулы обладают определенным объемом (т. е. не рассматриваются только как материальные точки). Уравнение Ван-дер-Ваальса для 1 моль реального газа  [c.132]

    Идеальный поток имеет место в системах твердые частицы — жидкость в том случае, если плотность материала частиц и их размер не слишком велики и отсутствуют силы взаимодействия, приводящие к слипанию частиц. [c.86]

    Идеальный дисперсный поток может быть описан двухскоростной моделью взаимопроникающего движения двух несжимаемых фаз в поле сил тяжести, с одинаковым давлением в фазах, одинаковыми частицами, форма которых близка к сферической, при отсутствии вязкого трения на стенках колонны, дробления и коагуляции частиц. [c.87]

    Идеальным газом называют газ, состоящий из вполне упругих молекул, между которыми не действуют силы взаимного притяжения, а объем, занимаемый молекулами, исчезающе мал по сравнению с объемом пространства между молекулами. [c.21]

    Встречное движение взаимодействующих потоков в аппарате, однако, неравноценно идеальной схеме противотока. В реальных аппаратах встречное движение потоков характеризуется неравномерными профилями скоростей по сечению, сопровождается механическим уносом легкой фазы более тяжелой фазой и, наоборот, продольным переносом тепла и массы и, следовательно, неодинаковым временем пребывания частиц обоих потоков в рабочем объеме. Отклонение от режима идеального противотока ведет к. уменьшению движущей силы процесса обмена или химического превращения и соответствующему понижению эффективности колонных аппаратов. [c.8]


    Вследствие этих ограничений, естественно, желательно было бы располагать универсальным растворителем, свойства которого позволяли бы существование в нем кислот и оснований различной силы. Идеально такой растворитель не должен проявлять свойств кислот или оснований, т. е. он должен быть апротонным, или инертным. Он не должен подвергаться автопротолизу, т. е. растворенные в нем вещества должны проявлять присущие им кислотные или основные свойства. Истинно инертный растворитель фактически не должен участвовать в процессе переноса протона, когда растворенная кислота реагирует с титрантом-основанием, и наоборот. [c.168]

    Создание космогонии должно было подтвердить эту точку зрения Декарта. Созданная им картина мира представляла вселенную в виде сложного и автоматичёЬкого механизма, который действовал лишь благодаря сочетанию составляющих его частей. Микрокосм - человек - также представлял собой машину, действующую благодаря своему строению, без участия сил идеальных. Однако в конкретном приложении своих идей к функционированию живых организмов Декарт не смог избежать некоторых противоречий. Я хочу, - писал он, - чтобы все считали, что все функции происходят в этой машине совершенно естественно из одного только расположения ее органов, ни больше, ни меньше, как это происходит при движении часов или какого-либо другого автомата, зависящего от расположения его гирь и колес. Таким образом, по поводу этих движений не нужно соображать в этой машине никакой иной растительной или чувствующей души, кроме ее крови и ее духов (разрядка наша. - А.Ш.), взволнованных жаром огня, постоянно горящего в ее сердце, и который по своей природе совершенно тождествен с огнями, находящимися в телах неодушевленных (30, стр.83). [c.29]

    Для простоты изложения рассмотрим некоторое количество газа в жестком сосуде с совершенно непропускающими стенками. При достаточно большом времени наблюдения газ охлаждается равномерно распределенным по всему сосуду (пренебрегая, конечно, изменениями плотности, обусловленными гравитационными силами, и небольшими изменениями плотности около стенок, вызванными силами притяжения или отталкивания). Система эта будет характеризоваться состоянием равновесия, т. е. определенной энергией и одинаковыми давлением и температурой по всему сосуду. С молекулярной точки зрения давление возникает в результате хаотических столкновений молекул со стенками, а энергия системы просто равна сумме энергий отдельных молекул. Поэтому прежде всего для описания системы надо знать число молекул, имеющих данную скорость или кинетическую энергию (пренебрегая внутренней энергией молекул и действующими между ними силами — идеальный и одноатомный газ). Сведения о числе молекул, имеющих данную скорость, представляют функцией распределения по скоростям (энер- [c.124]

    Таким образом, идеальное выполнение закона поглощения возможно лищь, если отсутствует какое-либо взаимодействие между поглощающими частицами в растворе, т. е. при ионной силе, равной нулю ( 1 0), и не происходит изменения концентрации вследствие каких-либо химических процессов. Однако на практике такие условия могут быть созданы чрезвычайно редко. С изменением концентрации реагирующих веществ в широких пределах, [c.464]

    Результатом этих исследований явилось создание обобщающей работы, которую мы назвали Жизненная стратегия творческой личности . Ее центральная идея составить сводную идеальную партию в игре творческой личности с внешними и внутренними обстоя-тельстЬами. Внешние обстоятельства — сопротивление окружающей среды материальной субстанции самого человека (надо зарабатывать на пропитание, это отнимает силы и время), ближнего (семья) и дальнего (общество) окружения. Внутренние обстоятельства — сопротивление проблемы, например, необходимость сбора и обработки большой статистики. [c.215]

    Можно найти известную аналогию в развитии теории растворов электролитов и теории газового агрегатного состояния. В том и другом случаях первоначально предполагалось, что система ведет себя подобно идеальной и что между образующимися частицами нет сил взаимодействия. Приложение полученных на основе таких представлений законов к реальным системам приводило к значительным расхождениям между теорией и опытом. В связи с этим для газов вместо простого уравнгния газового состояния рУ = ЯТ предлагались другие, более сложные, в которых так или иначе учитывались силы взаимодействия между частицами. Одним из них было уравнение Ван-дер-Ваальса [c.73]

    Реальные системы отличаются от идеальных прежде всего тем, что в них проявляются силы Езапмодействия между частица-мн. Активности частиц отражают то взаимодействие и могут быть представлены в виде произведения концентрации иа некоторый множитель /,—так называемый коэффициент активности [c.74]

    Для проведения расчета можно использовать модель раствора, предложенную Дебаем и Гюккелем, согласно которой каждый ион окружен ионной атмосферой со знаком заряда, противоположным заряду центрального иона. Так как сильные электролиты диссоциированы полностью (а = 1), то все изменения молярной электропроводности с концентрацией обусловлены изменением энергии взаимодействия. Тогда в бесконечно разбавленном растворе, где ионы настолько удалены друг от друга, что силы взаимодействия между ними уже не могут проявляться, ионная атмосфера не образуется, и раствор электролита ведет себя подобно идеальной газовой сн-сгсмс, В этих условиях молярная электропроводность электролита будет наибольшей и равной .  [c.121]

    Будевский с сотр. (1966), проводя эксперименты с идеальной гранью (111) серебра, служившей катодом, продемонстрировал возможность такого процесса. В опытах Булевского на катод подавался кратковременный импульс тока, вызывавший смещение потенциала в отрицательную сторону, достаточное для образования двухмерного зародыша. Затем потенциал несколько сдвигали в положительную сторону, что исключало возможность возникновения новых двухмерных зародышей, но обеспечивало рост уже созданного зародыша. Ток, протекавший через ячейку, вначале возрастал, а затем —по достижении фронтом роста зародыша края грани — падал до нуля. Дальнейший рост грани требовал повторного сдвига потенциала в отрицательную сторону до величины, обеспечивающей возникновение следующего двухмерного зародыша. Результаты опытов Булевского показали, что при заданном потенциале наблюдаются периодические колебания силы тока (или, при постоянной силе тока, колебания потенциала) и что рост грани может совершаться через стадии образования двухмерного зародыша и его распространения на поверхности. Однако такой механизм справедлив лишь для некоторых предельных случаев, которые обыч- [c.337]

    Вначале концевые эффекты объясняли интенсивным массооб-меном, вызванным турбулизацией потоков в месте их входа в аппарат. Позднее [206] эти эффекты были объяснены продольным перемешиванием сплошной фазы. Оказалось [204], что экспериментальный профиль концентраций в распылительных колоннах располагается между расчетными профилями концентраций в. режимах идеального перемешивания и идеального вытеснений.. Расчеты показали, что модели идеального перемешивания соответствует наибольший концевой эффект, постепенно убывающий при переходе к поршневому потоку. Таким образом, концевой эффекту входа сплошной фазы в колонну не является следствием большого локального коэффициента массопередачи, а обусловлен конвективными потоками, не учитываемыми моделью идеального вытеснения. В результате из-за снижения движущей силы процесса уменьшается интенсивность межфазного массо- или теплообмена. [c.201]

    Отклонения от идеального поведения обусловлены эффектами на входе (профиль скорости в выпускном отверстии не ровный), гравитационными эффектами (вертикальная струя ускоряется и сокращает- о Профиль ся действием силы тяжести) и эффек- скоростей тами на выходе (рябь и поверхностная < щ. в застойность, вызванные расширением струи). Первые два эффекта были изучены теоретически Скривеном и Пигфордом [4], а также Биком [5]. Последний эффект во многих случаях незначителен, но иногда может быть значительным [6]. [c.93]

    При обтекании системы тел идеальной жидкостью (р, = О и Re- oo) линии тока между ними сгущаются (рис. II. 2) и скорость в этом промежутке возрастает. По закону Бернулли Р + = onst, давление в этом промежутке уменьшается и на тела начинают действовать как бы силы притяжения, [c.29]

    Б. Жесткая сферическая модель. В этом случае предполагается, что молекула похожа на бильярдный шар, т. е. она представляется в виде твердой сферы диаметролс ст с массой т (молекулярный вес), способный только к идеально упругим столкновениям с другими молекулами и стенками сосуда. Эта модель часто используется при исследовании столкновений молекул, но ее нельзя применять для конденсированных систем (жидкостей или твердых тел), так как она не предполагает никаких других сил между молекулами, кроме сил отталкивания при соударении двух молекул. Ее преимущество в том, что молекула характеризуется единственным параметром ст —диаметром молекулы. [c.126]

    Чем больше плотность газа, т. е. чем меньше расстояние между его частицами, тем больше такой газ отклоняется от идеального состояния. Действительно, с увеличением плотности газа начинают увеличиваться не только силы взаимодействия между его частицами, но также и относительный объем их по оравненпю с общим объемом газа. Это обстоятельство вызывает необходимость внести соответствующие поправки в уравнение (24) для идеальных газов внешнее измеряемое давление Р газа должно быть увеличено за счег сил взаимного притяжения его частиц, а объем V — уменьшен на величину объема, занимаемого массой частиц. Силы взаимного притяжения частиц, называемые ван-дер-ваальсовыми силами, могут рассматриваться как внутреннее давление газа, и величина их, в первом приближении, обратно пропорциональна квадрату объема, занимаемого газом. [c.54]

    Межмолекулярные силы. Молекулы идеального газа мы представляем себе в виде материальных точек со свойствами идеально упругих шаров, не притягивающихся и не отталкивафщихся взаимно. Этих представлений, почерпнутых из элементарной физики, недостаточно для количественного описания таких явлений, как, например, вязкость или теплопроводность газов и жидкостей. Обычно необходимо учитывать межмолекулярные силы. [c.70]

    При феноменологическом подходе структура указанных параметров постулируется на основе более или менее правдоподобных гипотез, а для нахождения коэффициентов, входящих в полученные соотношения, привлекаются экспериментальные данные. Метод осреднения дает возможность конкретнее и более обоснованно установить структуру указанных выше членов, связав их.с параметрами течения на уровне отдельных частиц (мелкомасштабного течения). Однако для того, чтобы связать эти параметры с параметрами осредненного движения фаз, приходится вводить достаточно приближенную схематизацию мелкомасштабного течения, поскольку точное определение локальных характеристик течения дисперсной смеси практически невозможно. Окончательный вид выражений для тензоров напряжений в фазах и силы межфазного взаимодействия в зависимости от способов осреднения и принятых схем мелкомасштабного течения оказывается различным. Кроме того, эти выражения могут быть получены аналитически лишь для предельньгх случаев движения дисперсной смеси, когда сплошная фаза — очень вязкая или идеальная жидкость. Поэтому в дальнейшем для определения структуры указанных выше членов будем использовать в основном феноменологический подход, привлекая лишь в некоторых случаях результаты, полученные аналитическими методами. [c.60]

    Задача определения силы сопротивления, действующей на частицу в суспензии, сводится к задаче отыскания полей скоростей и давлений вокруг частицы, движущейся в замкнутой оболочке. Течение жидкости в ячейке должно удовлетворять уравнениям Навье-Стокса. Рещение в аналитическом виде удается получить только для двух предельных случаев режима ползущего движения, описываемого уравнениями Стокса, и инерционного режима движения, описываемого уравнениями идеальной несжимаемой жидкости. На поверхности частицы должно удовлетворятся обычное условие отсутствия скольжения, т. е. скорость движения жидкости должна быть равной средней скорости движения частицы. Условия на внещней границе ячейки, отражающие воздействие всего потока на выделенную ячейку, не могут быть определены однозначно, поскольку механизм этого воздействия недостаточно понятен. В основном используются три типа условий 1) предполагается, что возмущение скорости, вызванное наличием частицы в ячейке, исчезает на границе ячейки [105] 2) ставится условие непротекания жидкости через границу ячейки (обращается в нуль нормальная составляющая скорости) и предполагается отсутствие касательных напряжений на границе ячейки (модель свободной поверхности) [106] 3) условие непротекания жидкости сохраняется, но предполагается, что на границе ячейки обращаются в нуль не касательные напряжения, а вихрь [107]. [c.68]

    Вггервые отклонение свойств реального газа от идеального было установлено и объяснено М. В. Ломоносовым. В реальных газах на зависимость между параметрами состояния оказывает влияние объем молекул и силы сцепления между ними. [c.27]

    Давление реальных газов в обычных условиях, как правило, меньше давления идеальных газов вследствие влияния кохезион-ных сил (сил притяжения между молекулами газа). Осмотическое давление реальных растворов значительно больше осмотического давления идеального раствора. Одно это обстоятельство указывает на то, что аналогия между осмотическим и газовым давлением случайна и не имеет существенного значения. [c.246]

    Молекулярные силы, вызывающие отклонения свойств реальных газов от идеальных законов, действуют и при адсорбции. Это в основном силы электрокинетические—так называемые дисперсионные силы, вызываемые согласованным движением электронов в сближающихся молекулах. Вследствие движения электронов даже молекулы с симметричным (в среднем) распределением электронной плотности обладают флуктуирующими (колеблющимися по направлению) отклонениями этой плотности от средней, т. е. флуктуирующими диполями, квадруполями и т. д. При сближении молекул движения этих флуктуирующих диполей, квадру-полеп и т. д. разных молекул перестают быть независимыми, что и вызывает притяжение. Эти силы называются дисперсионными потому, что флуктуирующие диполи вызывают явление [c.437]


Смотреть страницы где упоминается термин Сила идеальная: [c.24]    [c.188]    [c.87]    [c.80]    [c.123]    [c.476]    [c.88]    [c.86]   
Теория и проектирование гидро- и пневмоприводов (1991) -- [ c.29 ]




ПОИСК





Смотрите так же термины и статьи:

Идеальные тепловые машины Размышления о движущей силе огня и о машинах, способных развивать эту силу



© 2024 chem21.info Реклама на сайте