Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диполь флуктуирующий

    Ориентация осей диполей флуктуирует возле направления внешнего поля, так что их взаимодействие между собой определяется формулой (3.9.80) с заменой в ней величины магнитного момента частиц т на среднее значение проекции магнитных моментов на направление внешнего поля, т. е. на что приводит к формуле  [c.662]

    Дисперсионное взаимодействие. Если оба вещества неполярны, то взаимодействие их молекул определяется дисперсионными силами, открытыми Лондоном. Дисперсионные силы притяжения вызываются взаимными короткими, периодически возникающими диполями. Молекулы неполярных веществ обладают флуктуирующими диполями. Это такие колебания (флуктуации), которые вызывают мгновенные отклонения распределения электронной плотности от среднего распределения. Положение электрона относительно ядра можно рассматривать как кратковременный вращающийся диполь, заставляющий молекулу другого вещества в данное мгновение ориентироваться относительно этой молекулы (рис. 2). [c.44]


    При сближении молекул неполярных веществ движение флуктуирующих диполей становится согласованным, обусловливая их притяжение и согласованную ориентацию. Это приводит к появлению постоянно возобновляющихся сил притяжения, что обусловливает взаимную ориентацию неполярных молекул. В итоге природа дисперсионного взаимодействия тоже дипольная и, следовательно, сила этого взаимодействия обратно пропорциональна г . [c.44]

    Тепловое движение молекул растворителя приводит к тому, что поляризация периодически изменяется во времени (флуктуирует). В основном это связано с периодическим изменением ориентации диполей растворителя. Такой тип флуктуаций растворителя называется ориентационными (или либрационными) колебаниями. Частота этих колебаний составляет приблизительно 1011 с" , хотя либрационные колебания характеризуются не одной частотой, а целым набором частот. Кроме этого, в растворителе возможны флуктуации поляризации, связанные с колебаниями внутримолекулярных связей ((о 101 — 101 с 1) и с деформацией электронных оболочек (со 101 с"1). Из-за очень высоких частот (а следовательно, и энергий Асо) при обычных температурах эти флуктуации очень малы, и ими можно пренебречь по сравнению с ориентационными. [c.281]

    Существенной особенностью дисперсионных взаимодействий является их, так сказать, арифметическая аддитивность (по крайней мере приближенная) для двух объемов конденсированной фазы, разделенных зазором, имеет место суммирование притяжения отдельных молекул (хотя значение величины а может отличаться от ее значения в вакууме из-за взаимного влияния молекул в конденсированной фазе). Роль дисперсионной составляющей особенно велика при взаимодействии молекул конденсированных фаз на больших (по сравнению с молекулярными размерами) расстояниях. Суммарный дипольный момент макроскопических фаз в большинстве случаев равен нулю составляющие их постоянные диполи ориентируются в пространстве таким об-)азом, что их электрические поля взаимно нейтрализуют друг друга. Напротив, жаждая молекула данной фазы будет поляризоваться под влиянием флуктуирующих диполей другой фазы и взаимодействовать с ними. Поэтому па больших расстояниях взаимодействие молекул конденсированных фаз и тем самым образуемых ими частиц практически полностью обусловлено дисперсионным взаимодействием этот случай особенно существен при взаимодействии частиц дисперсной фазы через тонкие прослойки дисперсионной среды, что подробно рассматривается в гл. IX. [c.26]

    Механизмы релаксации. Релаксационная спектроскопия. Ядерная магн. релаксация обусловлена процессами обмена энергией между ядерными спинами. Переориентация спинов в поле Вд происходит под действием флуктуирующих локальных магн. или электростатич. полей. В зависимости от механизма обмена энергией различают диполь-дипольную, квадрупольную, спин-вращательную и др. типы релаксации. [c.519]


    Такое флуктуирующее магнитное поле диполя зависит от величины ядерных моментов, расстояния между ядрами в твердом веществе, концентрации обладающих магнитными ядрами молекул в растворе, частотного распределения молекулярного движения. [c.332]

    Как подчеркивалось в гл. VII, спин-решеточную релаксацию вызывают флуктуирующие магнитные поля, приводящие к возникновению радиочастотных колебаний, соответствующих переходам ЯМР. Существует несколько источников таких флуктуирующих полей, и поэтому несколько механизмов дают вклад в релаксацию. Для нас в первую очередь представляет интерес биполярный механизм релаксации, где флуктуирующее поле возникает за счет модуляции диполярного спин-спинового взаимодействия. Локальное магнитное поле, индуцируемое на ядре соседним магнитным диполем, определяется уравнением (I. 12). Его зависимость от времени для внутримолекулярных взаимодействий определяется изменениями угла 6, для межмолекулярных взаимодействий — изменениями как угла 0, так и расстояний г между ядрами. [c.411]

    Взаимодействия типа индуцированный диполь — индуцированный диполь. Связи, образуемые за счет таких сил,—наиболее слабые из числа межмолекулярных взаимодействий и встречаются в твердых веществах молекулярного типа, состоящих из симметричных молекул. Например, молекулы твердого иода способны взаимодействовать друг с другом в результате взаимно индуцируемых слабых флуктуирующих диполь-дипольных связей. Упаковка молекул иода 12 в решетке кристалла показана на рис. 8.23, где изображено одно из возможных расположений положительных и отрицательных индуцированных зарядов. Самым лучшим примером проявления взаимодействия типа индуцированный диполь — индуцированный диполь являются благородные газы в жидком или твердом состоянии. Чрезвычайно низкие температуры, необходимые для конденсации или отвердевания этих веществ (температура плавления неона приблизительно [c.144]

    Когда луч света проходит через жидкость или газ, небольшая его часть рассеивается. Идеальное кристаллическое твердое тело не рассеивает излучение, так как излучение, рассеянное единичным кристаллом, будет исчезать в результате интерференции с излучением, рассеянным другим единичным кристаллом. Механизм рассеяния света включает поляризацию молекул или атомов электрическим полем. При этом электрическое поле излучения индуцирует в атомах или молекулах быстро флуктуирующий диполь. Как говорится в разд. 20.13, флуктуация диполя ведет к испусканию электромагнитных волн в различных направлениях при той же частоте, что и у падающего света, — это рассеянное излучение. Такое рассеяние, называемое рэлеевским, можно рассматривать как упругое рассеяние фотона молекулой. [c.477]

    Если приложить к образцу в спектрометре ЯМР очень мощный импульс электромагнитного излучения, то практически все ядра могут перейти в возбужденное магнитное состояние. Если сразу вслед за этим приложить еще один импульс, то поглощение энергии будет невелико, так как система насыщена. В наиболее широко применяемых спектрометрах ЯМР для уменьшения эффекта насыщения используют радиочастотное поле малой интенсивности. Однако в импульсных ЯМР-спектрометрах с фурье-преобразованием. применение мощных импульсов приводит к высокой степени насыщения. Использование повторных импульсов не позволяет получать полезную информацию, если возбужденные ядра не релаксируют достаточно быстро в состояние, характеризующееся равновесным распределением энергии. Релаксация происходит за счет взаимодействий ядер с флуктуирующими магнитными полями окружения. Релаксация органических молекул в растворе происходит в основном за счет флуктуаций, обусловленных движением электрических диполей, находящихся в непосредственной близости. Однако даже при наличии таких взаимодействий времена релаксации протонов в воде могут измеряться секундами. [c.345]

    Влияние электромагнитного запаздывания на энергию молекулярного взаимодействия. Ввиду конечной скорости распространения электромагнитных волн при расстоянии между двумя атомами, сравнимом по порядку величины с лондоновской длиной волны, фазовый сдвиг флуктуирующих диполей отличается от 0° и дисперсионные силы уменьшаются быстрее, чем это следует из уравнения (32). Казимир и Польдер [61] вычислили, что для межатомных расстояний г Л дисперсионная энергия изменяется пропорционально 1/г , а не 1/г , причем поправочный коэффициент, который необходимо ввести в уравнение (32), является функцией межатомного расстояния  [c.39]

    Устраняется также трудность [55] , возникающая при использовании абсолютной интенсивности поглощения инфракрасного излучения для определения дипольных моментов связей, как, например, С—Н. Когда связь С—Н в этилене участвует в деформационных колебаниях, составляющая ее дипольного момента вдоль любой оси симметрии молекулы будет флуктуировать. Интенсивность поглощения при колебаниях зависит от величины флуктуирующего диполя. Следовательно, экспериментальные измерения интенсивностей дают величину флуктуирующего дипольного момента. При этом оказывается, что наблюдаемый момент связи С—И различен при различных нормальных колебаниях. Последнее объясняется тем, что при некоторых нормальных колебаниях гибридные АО атома углерода могут следовать за атомами Н с большей легкостью, чем при других нормальных колебаниях, вследствие чего вклад атомных диполей (раздел 8.10) меняется разным образом при различных нормальных колебаниях. В результате статический дипольный момент связи может существенно отличаться от динамического момента, относящегося к какому-либо определенному нормальному колебанию. [c.250]


    Главную долю сил притяжения, согласно исследованиям Лондона (1930), составляют дисперсионные силы для неполярных молекул они практически полностью определяют взаимодействие. Вследствие постоянного движения электронов каждый атом и каждая молекула, в том числе и не содержащие диполей, в каждый момент времени электрически несимметричны и обладают дипольными моментами, которые в среднем (за некоторый интервал времени) компенсируют друг друга. Такая система электронов действует как флуктуирующий диполь, поляризующий соседние атомы или молекулы, вследствие чего возникают силы притяжения. Эти силы не зависят от температуры. [c.178]

    Диполь-дипольная релаксация. Спин-решеточная релаксация ядер С может вызываться флуктуирующими полями, обусловленными диполь-дипольными взаимодействиями с соседними магнитными ядрами (или неспаренными электронами). [c.20]

    Действительное расстояние, на котором локализуются две молекулы, определяется балансом сил притяжения и отталкивания. Слабые короткодействующие силы притяжения между молекулами обусловлены взаимодействием постоянных диполей, индуцированных диполей и так называемых лондоновских сил. Последние возникают в результате взаимодействия флуктуирующих диполей, средние значения которых во времени в любой молекуле равны нулю. [c.110]

    Силы притяжения определяются главным образом дисперсионными силами [9] для неполярных молекул практически лишь они одни ответственны за взаимодействие. Вследствие непрерывного движения электронов каждый атом и каждая молекула, в том числе и не содержащие диполей, несимметричны и обладают дипольными моментами, компенсирующимися лишь в виде средних величин за некоторый промежуток времени. Такая система электронов действует как флуктуирующий диполь, поляризующий электронные системы соседних атомов или молекул, вследствие чего возникает сила притяжения. Согласно Лондону [9], взаимодействие зависит от поляризуемости а и ионизационного потенциала обоих когерентных партнеров и не зависит от температуры, как это видно из соотношения [c.73]

    Если время релаксации ядра 5 очень мало по сравнению с вкладом <1 5-взаимодействия т. е. если Гf мало по сравнению с 1/Л, то локальное поле Л5(/)/у1, создаваемое на ядре 1 ядром 5, флуктуирует с временем корреляции тз= Tf. В этих условиях, естественно, проявляется только среднее значение спин-спинового взаимодействия и в спектре ядра / наблюдается не ожидаемый мультиплет, а одиночная линия. Способом, аналогичным приведенному выше для диполь-дипольного взаимодействия, можно показать [27], что [c.95]

    Для полноты следует упомянуть, что в принципе если тензор А анизотропен, то его анизотропия совместно с молекулярным движением также создает флуктуирующие поля на связанных ядрах. Однако эта анизотропия почти всегда в 1000 раз (или больше) слабее диполь-дипольного взаимодействия, а поскольку времена корреляции для этих взаимодействий сравнимы, то вклад анизотропии спин-спиновой связи в пренебрежимо мал. [c.98]

    Дисперсионный потенциал выражает энергию взаимодействия между флуктуирующим диполем молекулы и индуцированными диполями молекул адсорбента. Ориентационный потенциал учитывает эффект взаимодействия постоянного диполя адсорбируемой молекулы и постоянных диполей молекул адсорбента. Индукционный потенциал отражает взаимодействие между постоянным диполем адсорбируемой молекулы и индуцированными диполями молекул адсорбента. Как показали теоретические расчеты, дисперсионный, ориентационный и индукционный потенциалы изменяются обратно пропорционально кубу расстояния между адсорбируемой молекулой и поверхностью адсорбента. [c.53]

    Взаимодействие между молекулами адсорбата и адсорбентом может иметь различный характер. Молекулярные силы, вызывающие отклонения свойств реальных газов от идеальных законов, действуют и при адсорбции. Это в основном так называемые дисперсионные силы, вызываемые согласованным движением электронов в сближающихся молекулах. Вследствие движения электронов даже молекулы с симметричным (в среднем) распределением электронной плотности обладают флуктуирующими (колеблющи- мися по направлению) отклонениями этой плотности от средней, т. е. флуктуирующими диполями, квадруполями и т. д. При сближении молекул движения этих флуктуирующих диполей, квадру-полей и т. д. разных молекул перестают быть независимыми, что и вызывает притяжение. Эти силы называются дисперсионными потому, что флуктуирующие диполи вызывают явление дисперсии света. Часто имеют значение электростатические силы — ориентационные силы, проявляющиеся при адсорбции полярных м Олекул на поверхностях, несущих постоянные электростатические заряды (ионы, диполи), и индукционные силы, обусловленные появлением в адсорбирующихся молекулах дипольных моментов, наведенных зарядами поверхности, или появлением дипольных моментов в [c.414]

    Молекулярные силы, вызывающие отклонения свойств реальных газов от идеальных законов, действуют и при адсорбции. Это в основном силы электрокинетические—так называемые дисперсионные силы, вызываемые согласованным движением электронов в сближающихся молекулах. Вследствие движения электронов даже молекулы с симметричным (в среднем) распределением электронной плотности обладают флуктуирующими (колеблющимися по направлению) отклонениями этой плотности от средней, т. е. флуктуирующими диполями, квадруполями и т. д. При сближении молекул движения этих флуктуирующих диполей, квадру-полеп и т. д. разных молекул перестают быть независимыми, что и вызывает притяжение. Эти силы называются дисперсионными потому, что флуктуирующие диполи вызывают явление [c.437]

    Межмо-пекулярные силы складываются из ориентационных (электростатическое взаимодействие дипольных молекул) электрокинетических — дисперсионных, ВЫЗЫВабМЫХ СОГЛЗСОВЗННЫМ двим ением электронов в сближающихся молекулах (флуктуирующие диполи) [эти силы называют дисперсионными потому, что флуктуирующие (колеблющиеся) диполи являются причиной дисперсии света] индукционных сил, обусловленных появлением наведенных диполей за счет поляризации молекул. [c.92]

    Наблюдение ЯМР было бы невозможным, если бы ядра не могли отдавать часть энергии своему окружению посредством безыз-лучательного перехода, поскольку в таком случае поглощение энергии прекратилось бы вследствие выравнивания числа ядер на верхнем и нижнем энергетическом уровнях. Механизм, по которому происходит обмен энергией между спин-системой и окружением, называется спин-решеточной релаксацией. Его можно понять, рассматривая прецессию ядер. В реальном веществе пре-цессирующее ядро (см. рис. 15.4) всегда находится под влиянием флуктуирующих (переменных) магнитных полей, связанных с тепловым движением соседних магнитных диполей. Время от времени [c.223]

    Наиболее важной проблемой, с точки зрения аналитического применения метода, является природа процессов релаксации в жидкостях. При рассмотрении возможности передачи энергии путем спонтанной эмиссии, теплового излучения, электрических взаимодействий показано, что найденные экспериментально времена релаксации Т, и Та, например, протонов воды могут быть объяснены лишь при учете магнитных взаимодействий между частицами через локальные магнитные поля. Локальные поля будут флуктуировать, поскольку молекулы в растворах совершают трансляционные, вращательные и колебательные движения. Компонента создаваемого таким образом переменного поля с частотой, равной частоте резонанса, вызывает переходы между энергетическими уровнями изучаемого ядра совершенно так же, как и внешнее радиочастотное поле. Скорость процесса, приводящего к выравниванию энергии в спиновой системе и между спиновой системой и решеткой , будет зависеть от распределения частот и интенсивностей соответствующих молекулярных движений. При эюм следует учитывать следующие виды взаимодействий магнитное диполь-дипольное, переменное электронное экранирование внешнего магнитного поля, эле.ктрпческое квад-рупольное взаимодействие (эффективное для ядер с / > /2), спин-вращательное, спин-спиновое скалярное между ядрами с разными значениями I. [c.739]

    Учитывая, что энергия дпполь-дипольного взаимодействия не зависит от (она зависит только от межъядериого расстояния, которое в нашей модели считается фиксированным), а скорость его изменения, наоборот, зависит от мы можем предсказать, что общее число осциллирующих полей будет постоянным, а верхний предел их частот будет определяться т .. Если мы построим график зависимости напряжеи-иости флуктуирующих полей спектральнан плотность, обусловленная диполь-дипольным взаимодействием, обычно обозначается 3) от частоты со для нескольких значений то они будут иметь одинаковую площадь под кривой, но различные верхние пределы (рис. 5.7). Мы можем также принять без доказательства, что при ш 1 /т . спектральная плотность будет приблизительно постоянной, как это показано на рисунке (такое предположение доказывается теоретически и подтверждается экспериментально). Это позволяет нам дать некоторые количественные оценки величин и даже У исходя из (т.е. с учетом температуры, вязкости и т.д.). [c.155]

    Несмотря на многообразие характера адсорбционных сил, все адсорбционные явления можно разбить на два основных тина физическую адсорбцию и сорбцию, основанную на силах химического взаимодействия. Физическая адсорбция вызывается силами молекулярного взаимодействия. В большинстве случаев основной вклад в энергию взаимодействия вносят дисперсионные силы. Молекулы любого адсорбтива обладают флуктуирующими диполями и квадруполями, вызывающими мгновенные отклонения распределения электронной плотности от среднего распределения. При сближении молекул адсорбти- [c.27]

    Не все молекулы и не все химические связи поглоща1Ьт инфракрасное излучение. Электромагнитные свойства излучения требуют, чтобы данное колебание приводило к флуктуирующему диполю (и, следовательно, к флуктуирующему электрическому полю). Коле ния простых двухатомных молекул, например молекул водорода тя азота, не нарушают их симметрию и поэтому не обусловливают появление полос поглощения в инфракрасных спектрах. [c.40]

    Особый случай — взаимодействие между неполярными молекулами, взаимное притяжение которых объясняют наличием так называемого дисперсионного взаимодействия. Дисперсионные силы возникают за счет колебательных двил еиий ядра и электронов друг относительно друга, в результате чего в атоме возникают как бы флуктуирующие диполи. Образование этих диполей можно представить иаглядио, воспользовавшись представлением об элек- [c.127]

    Механизм воздействия внешнего поля на взаимодействие магнитных диполей связан с тем, что вращательное тегиювое движение частиц вынуждает флуктуировать магнитные оси диполей вблизи направления суммарного поля Н, действующего на диполь. Средняя величина косинуса угла (Нт) между направлением поля Н и диполя т и есть функция Ланжевена ( ). В отсутствие внешнего поля при Я= Hi, следовательно, А, = . Поэтому при условии (3.9.81) и, согласно формуле (3.9.70а) i( ) = )1о г,Я / ЪкТ. Здесь использованы принятые выше индексированные обозначения магнитного момента т, и локального поля Я, партнеров по взаимодействию. Вращательная тепловая диффузия оси диполя nij не слишком сильно влияет на напряженность локального поля Hj. Согласно формулам (3.9.75) и [c.662]

    Дисперсионные силы имеют квантово-механический характер. Как следует из современных теорий строения атома, всякий электрон движется с определенной энергией, значение которой колеблется около некоторого среднего значения (т. е. флуктуирует). В результате этих колебаний электрон может на короткое время перескочить на более далекую от ядра оболочку. Если до флуктуации центры тяжести положительных и отрицательных зарядов совпадали (т. е. атомы или молекулы не имели дипольного момента), то после перескока электрона появится мгновенный диполь. Он может или индуцировать диполь в каком-либо соседнем атоме, или взаимодействовать с другим мгновенным диполем, появив- Рис. 10. [c.39]

    Каталитический акт проходит при взаимодействии возбужденных молекул углеводорода и каталитического центра. В зависимости от интенсивности предварительного возбуждения могут происходить следующие электронные переходы ст->а, я->л и п- л. При таких переходах образуются частицы с различными зарядами. УФ-излучение, вероятно, кратковременно активирует молекулы реагирующих веществ, у-излу-чение может активировать как молекулы реагирующих веществ, так и реакционные центры катализатора. Последнее предположение подтверждается тем, что в облученных -лучами жидких углеводородах количество возбужденных молекул незначительно, а возбужденные состояния в алюмосиликатных катализаторах существуют продолжительное время, и активность их в радиационно-каталитических процессах возрастает с увеличением продолжительности облучения. Механизм алкилирования может включать следующие стадии предварительно возбужденная молекула (или молекула, находящаяся в основном состоянии) бензола или олефина попадает в поле действия полиэдра, два диполя (наведенный в молекуле реагирующего вещества и по связи А1 — О полиэдра) при взаимодействии образуют промежуточное соединение, которое, возможно, удерживается в определенном положении электростатическими и вандерваальсовскими силами. На связях молекул реакционноактивного вещества с каталитическими центрами или на связях только молекул реагирующего вещества может флуктуировать энергия в форме колебательной или какой-либо другой. Роль поставщика этой избыточной энергии по сравнению со средней может выполнять твердое тело — масса катализатора, стенки сосуда и т. п. Избыточная энергия может возбуждать электроны реагирующих молекул, находящихся в адсорбированном слое, или возбуждать молекулы, находящиеся в основном состоянии. Можно представить, что электрон с верхней заполненной л -орбитали бензола (или олефина) переходит на я -орбиталь (разрыхляющую) бензола с последующим переходом на вакантную 5с -орбиталь [ЛЮ4] -тетраэдра. На этой стадии может образоваться катион-радикал и [АЮ4] -тетраэдр  [c.70]

    Лондоновское притяжение может рассматриваться как следующее из принципа неопределенности Гайзеиберга, согласно которому электрическое поле атома или молекулы случайно флуктуирует. Согласно рассмотрению Лондона, эти флуктуации (возникающие на частотах, соответствующих ультрафиолетовой области спектра) могут приводить к появлению переменного диполя, способного наводить диполи в других атомах или молекулах. Никакой вызванной флуктуирующим полем диссипации энергии при этом не происходит, так как полная энергия рассматриваемой системы меньше одного кванта. Концепция, альтернативная упомянутой выше, была недавно детально развита Краппом [11]. Согласно последней, случайные флуктуации всех молекул формируют основное состояние поля радиации с определенной энергией = = Все молекулы пребывают в состоянии равновесия с этим [c.18]

    Как указывалось выше, спектр ЯМР многих парамагнитных веществ не удается получить из-за того, что наличие неспаренного электрона приводит к уширению сигнала вследствие взаимодействия по дипольному механизму и взаимодействия электронного и ядерного спинов. Поскольку магнитный момент электрона примерно в 10 раз больше магнитного момента ядра, добавление парамагнитных ионов приводит к появлению сильных магнитных полей, очень эффективно вызывающих диполь-ную спин-решеточную релаксацию, так что понижается (см. раздел, посвященный химическому обмену и другим факторам, влияюшим на ширину линий). Если волновая функция, описывающая неспаренный электрон, имеет конечное значение у ядра, то возникает взаимодействие электронного спина со спином ядра. Оно также приводит к появлению у ядра флуктуирующего магнитного поля, укорачивающего Т1. Если электронная релаксация очень медленная, время жизни иона в данном спиновом состоянии будет большим и должны наблюдаться два резонанса, соответствующих 5= /2- Такое положение осуществляется не особенно часто. Если время жизни парамагнитного состояния очень мало, магнитное ядро будет реагировать только на усредненное по времени магнитное поле двух спиновых состояний электрона и в спектре должен наблюдаться лишь один пик. Часто электронная спиновая релаксация имеет скорость, промежуточную между этими двумя предельными случаями, что в результате приводит к укорочению и очень большому уширению сигналов. Если электронная релаксация очень быстрая, уширение минимально и главным результатом присутствия неспаренных электронов явится изменение магнитного поля, влияющего на магнитное ядро. Это приводит к очень большому химическому сдвигу (достигающему иногда 3000—5000 гц) резонанса в ЯМР-спектре. Такой сдвиг называется контактным ЯМР-сдвигом. [c.323]

    Как и в случае рекомбинации радикалов, изменение спиновой мультиплетности может индуцироваться Ад- и СТВ-механизма-ми. Для триплетных молекул более эффективны переходы, обусловленные диполь-дипольным взаимодействием неспаренных электронов в каждой из молекул, случайным образом модулируемым тепловым движением триплетных молекул в растворах. Это приводит к эффективной парамагнитной релаксации триплетных молекул. Релаксационные переходы смешивают состояния двух парамагнитных частиц с различной мультиплетностью. Следовательно, влияние магнитного поля на элементарные процессы с участием триплетных молекул в растворах интерпретируется как результат полевой зависимости релаксационных переходов, вызванных флуктуирующим диполь-дипольным взаимодействием в триплетных молекулах. Такая интерпретация эквивалентна схеме, предложенной Броклехурстом [39] для объяснения эффекта магнитного поля в радиационно-химических превращениях. [c.183]


Смотреть страницы где упоминается термин Диполь флуктуирующий: [c.30]    [c.154]    [c.237]    [c.28]    [c.232]    [c.95]    [c.245]    [c.245]    [c.179]   
Коагуляция и устойчивость дисперсных систем (1973) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Диполь



© 2025 chem21.info Реклама на сайте