Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты межмолекулярные реакции

    С удлинением углеродной цепочки, разделяющей функциональ ные группы, уменьшается вероятность внутримолекулярной реакции с образованием цикла. Уже -аминокислоты, содержащие более четырех атомов углерода в цепи, взаимодействуют по типу межмолекулярных процессов  [c.178]

    Трансаминирование — это реакция межмолекулярного переноса аминогруппы от аминокислоты на а-кетокислоту, протекающая без промежуточного образования свободного аммиака. Реакция трансаминирования (прежнее наименование переаминирования) была открыта в 1937 г отечественными учеными А. Е. Браунштейном и М. Г. Крицман. [c.374]


    Так как реакция эфира аминокислоты (или пептида) с аддуктом а-ациламинокислоты и карбодиимида является реак- цией межмолекулярной, в то время как перегруппировка аддукта в ацилмочевину — внутримолекулярная реакция, то объем растворителя должен быть минимальным, чтобы благоприятствовать образованию промежуточного соединения для получения пептида [201]. [c.227]

    Реакции, протекающие при одновременном участии карбоксильной группы и аминогруппы. Очень большое значение имеют реакции аминокислот, протекающие в результате взаимодействия аминогрупп и карбоксильных групп этих соединений. В зависимости от строения аминокислот и от взаимного положения карбоксильной и аминогруппы такие реакции могут протекать либо внутримолекулярно, либо межмолекулярно. [c.383]

    Незначительные изменения конформации белка, например набухание молекул сывороточного альбумина при нодкислении раствора до pH 4 [384, 385], часто обратимы. Обратимость конформационных переходов особенно благоприятна в том случае, если полипептидная цепь имеет внутримолекулярные дисульфидные мостики, которые накладывают ограничения на разворачивание цени. Наглядным примером такой обратимой денатурации является проведенное Германсом и Шерагой [395] исследование рибонуклеазы, молекула которой состоит из простой полипептидной цепи, сшитой четырьмя дисульфидными группами. Известна полная последовательность аминокислот в этом ферменте, и схематическое изображение полипептидной цени с указанием места поперечных связей [396] приведено на рис. 45. Отсюда возникает вопрос, можно ли разрушить поперечные связи путем восстановления, что позволяет цепи разворачиваться и возобновлять нативную конформацию с соответствующими нарами тиольных групп, окисленных до дисульфидных мостиков. Решающий эксперимент был поставлен Уайтом [397], который показал, что большая доля ферментативной активности, утерянная при восстановлении дисульфидных групп, может быть в основном восстановлена путем повторного окисления. Особенно важные результаты были получены Анфинсеном и др. [398], которые обнаружили, что воссоздание дисульфидных связей происходит быстрее, чем восстановление ферментативной активности белка. Так как восемь аминокислотных остатков, принимающих участие в создании четырех дисульфидных мостиков, могут соединяться друг с другом 105 различными способами и поскольку образование межмолекулярных дисульфидных связей влияет на ход внутримолекулярной реакции [399], образование многих поперечных связей в начальной стадии может протекать нерегулярно. Такие молекулы [c.137]


    Как и для а-гидроксикислот (см. разд. 8.1.1), для а-аминокислот характерна реакция межмолекулярного самоаци-лирования. Так, а-аминокислоты при нагревании могут превращаться в циклические амиды, называемые дикетопиперазина-ми (для этой цели удобнее использовать эфиры а-аминокислот, так как они циклизуются легче)  [c.457]

    Межмо лек у л ярное взаимодействие карбоксильной группы и аминогруппы а-аминокис-л о т. Для а-аминокислот наиболее характерны межмолекулярные реакции, в которых в результате взаимодействия карбоксильной группы одной аминокислоты и аминогруппы другой остатки аминокислот взаимно соединяются посредством карбамидной группировки [c.384]

    Для синтеза полипептидной цепи необходимо реплить простую, казалось бы, задачу — образовать амидную (пептидную) связь между молекулами аминокислот. Среди синтетических методов органической химии имеется много удобных путей для образования подобной связи, однако задача синтеза полипептидных структур серьезно осложняется тремя факторами. Во-первых, аминогруппу и карбоксил (илн по крайней мере один из них) необходимо активировать для того, чтобы при реакции между ними возникла связь. Во-вторых, в каждой молекуле аминокислоты содержатся обе функциональные группы (аминная н карбоксильная), при взаимодействии которых образуется пептидная связь. Это значит, что образование такой связи может происходить не только межмолекулярно, но и внутримолекулярно второе направление необходимо исключить. Наконец, для синтеза конкретного полипептида надо обеспечить необходимую последовательность аминокислот в полипептидной цепи. Все эти задачи решают, используя принцип активации одних групп и защиты других. Рассмотрим этот принцип на простейшем примере (в реальных синтезах полипептидов дело обстоит гораздо сложнее). [c.345]

    Таким образом, для 5-пептидов характерны реакции миграции внутримолекулярные и межмолекулярные, для пептидов р-оксиаминокислот Ы->0, 0->-Ы внутримолекулярные и 0- -Ы межмолекулярные. Кроме того, для пептидов р-оксиаминокислот характерна реакция внедрения. Все изложенное позволяет заключить, что 5-пептиды цистеина и О-пептнды р-оксиаминокислот представляют собой богатые энергией вещества, способные служить промежуточными соединениями в синтезе пептидных связей, подобно описанным ранее ангидридам аминокислот. К таким же богатым энергией веществам следует отнести Ы-ациль-ные производные дикетопиперазинов и Ы-имидазольные производные гистидина. Весьма возможно, что все они принимают какое-то участие в синтезе пептидов в живой клетке, являясь переносчиками аминоацильных остатков. [c.509]

    Основные химические изменения, которые происходят при этом, состоят в частичном разрушении нескольких аминокислот, таких, как цистеин, треонин, серии, изолейцин, лизин, с попутным снижением биологической ценности. Возможно появление необычных аминокислот в результате преобразования некоторых аминокислотных остатков (изолейцин и аргинин, дающие соответственно аллоизолейцин и орнитин), или как следствие конденсации между остатков одной и той же белковой цепи или двух цепей посредством межмолекулярных или внутримолекулярных ковалентных связей с образованием лантионина и особенно лизиналанина, возможная токсичность которого в настоящее время обсуждается [6]. В любом случае эти реакции образования сетчатой структуры еще больше снижают переваримость азотистой фракции. [c.589]

    Реакции с одновременным участием карбоксильной и аминогруппы. Одновре.менным присутствием в одной молекуле карбоксильной и аминогруппы обусловлены некоторые специфические реакции аминокислот образование внутренних солей (бетаинов) образование а.мидной (пептидной) связи, как межмолекулярной, так и внутримолекулярной и, наконец, распад сс-амннокислоты иод действием окислителей. [c.621]

    Аминотрансферазы или трансаминазы катализируют межмолекулярный перенос аминогруппы с аминокислот на кетокислоты. Коферментом трансаминаз является фосфопиродоксаль. Он служит непосредственным переносчиком аминогруппы с аминокислоты на кетокислоту. АсАТ и АлАТ катализируют следующие реакции  [c.86]

    Среди ферментов, переносящих азотистые группы, наибольшее значение имеют а м и н о тр а н с ф е р а з ы, которые катализируют межмолекулярный перенос аминогруппы между аминокислотами и кетокислотами в процессе реакции переами- нирования. Общая схема реакций переаминирования следующая  [c.63]

    Сформулированное Карозерсом определение поликонденсации как ступенчатой реак11ии, протекающей в результате межмолекулярного взаимодействия двух функциональных групп с выделением молекул низкомолекулярного соединения, в свете накопленных к настоящему времени экспериментальных данных требует уточнения. Согласно одному из определений [2 ], в основу которого положена специфика механизма процесса, поликонденсацией называют процесс образования полимеров, протекающий путем химического взаимодействия молекул би- и более функциональных соединений друг с другом и сопровождающийся гибелью реакционных центров мономеров после каждого акта роста полимерной цепи. Реакционными центрами мономерной молекулы в рассматриваемых процессах служат функциональные группи. Факт выделения побочного продукта и изменения в связи с этим элементного состава полимера по сравнению с составом исходного мономера или мономеров не является определяющим признаком поликоиденсационного процесса [22—25], Так, хорошо известная реакция образования полипептидов из ангидридов М-ацил-а-аминокислот [25] [c.37]


    Химия жизни в значительной степени является химией полифункцио-налъных органических соединений. Тип функциональных групп обычно делает возможным взаимодействие их друг с другом взаимное расположение групп часто бывает таким, что важное значение приобретают взаимодействия как внутри-, так и межмолекулярного типа. Одним из примеров таких соединений являются углеводы, выше было показано, каким образом в этих соединениях взаимодействуют спиртовая и карбонильная функции, в результате чего происходит либо циклизация в простых сахарах, либо образование связей между молекулами простых сахаров, что дает молекулы полисахаридов. Настоящая глава посвящена рассмотрению химии соединений, для которых характерно взаимодействие между амино- и карбоксильной группами. Особое внимание будет уделено веществам, имеющим важное физиологическое значение. Изложение будет разделено на три этапа. Сначала будет рассмотрена химия простых а-аминокислот при этом мы постараемся показать, каким образом изменяются свойства аминной и кислотной функций в молекулах, где присутствуют обе эти группы. Далее будет рассмотрен ряд важных свойств пептидов и белков — веществ, построенных из аминокислот, соединенных между собой амидными связями. Кратко будут также обсуждены проблемы, выдвигаемые химией ферментов — белковых молекул, способных действовать-в качестве катализаторов строго определенных химических реакций. В заключение будут кратко рассмотрены молекулярные основы генетики. [c.57]

    На основании обстоятельного изучения действия электронов с энергией 2 Мэе на твердый бычий сывороточный альбумин в бескислородных условиях Александер и Гамильтон [376] пришли к выводу, что в этом белке имеют место два типа радиационных повреждений во-первых, рас-кручивание молекулы, связанное с разрывом водородных связей, и, во-вторых, химические изменения, определяемые по исчезновению боковых цепей аминокислот и появлению карбонильных групп и групп, из которых при мягком гидролизе отщепляется аммиак. Раскручивание молекулы альбумина под действием излучения можно изучать, измеряя число дисульфидных связей, способных вступать в реакции. Так, в молекуле природного белка в изоэлектрической точке все семнадцать дисульфидных связей находятся в нереакционноспособном состоянии [377]. Если же облучать этот белок, то при увеличении дозы облучения до 50% дисульфидных связей приобретают реакционноспособность. Однако Александер и Гамильтон нашли, что при этом не происходит исчерпывающего образования межмолекулярных поперечных связей — 3 — 3 — за счет окисления сульфгидрильных групп. [c.431]

    Исходя из результатов модельных экспериментов можно ожидать, что под действием излучения произойдет нарушение первичной структуры белков (селективное разрушение отдельных аминокислот), изменится их вторичная структура, нарушится конформация и, возможно, структура активного центра ферментов. В нуклеиновых кислотах возникнут одно- и двухнитевые разрывы полинуклеотидных цепей, разрушатся некоторые азотистые основания, возникнут межмолекулярные сшив ки (ДНК—ДНК, ДНК—белск). Могут оказаться пораженными молекулы иРНК, тРНК и рибосомы. В липидах мембран будут инициироваться реакции свободнорадикального перекисного окисг ления, накапливаться токсические для клетки продукты окисления тканевых липидов. [c.129]


Смотреть страницы где упоминается термин Аминокислоты межмолекулярные реакции: [c.415]    [c.393]    [c.435]    [c.98]    [c.176]    [c.247]    [c.424]    [c.331]    [c.274]   
Органическая химия (1956) -- [ c.384 ]




ПОИСК





Смотрите так же термины и статьи:

Межмолекулярные

Реакции межмолекулярные



© 2025 chem21.info Реклама на сайте