Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

концевых аминокислот строение

    Вирус табачной мозаики (ВТМ). Из всех вирусов наиболее хорошо изучен растительный вирус табачной мозаики. Тем не менее сведения, которыми мы располагаем в настояш,ее время, вероятно, еще далеко не достаточны для полного описания его строения. Физические исследования показали, что ВТМ представляет собой тонкий стержень длиной 3000 А и диаметром 150 А. Вес такой частицы равен 39- 10 . Из этого числа 5% приходится на РНК, константа седиментации которой равна 27S, а молекулярный вес 2,0 10 . Если бы цепь РНК вируса полностью вытянуть, она была бы в 10 раз длиннее вирусной частицы. Остальные 95% вируса приходятся на белок, который состоит из 2130 идентичных субъединиц. В состав каждой субъединицы, имеющей молекулярный вес 17 420, входит 158 аминокислот. Белок вируса табачной мозаики является третьим белком после инсулина и рибонуклеазы, для которого полностью установлена последовательность аминокислот. Каждая белковая субъединица представляет собой единую полипептидную цепь, на N-конце которой находится ацетилированный серии. Это один из редких случаев особой модификации N-конца полипептидной цепи. Различные штаммы этого вируса отличаются по аминокислотному составу белка. У всех исследованных штаммов белковая часть содержит только один остаток цистеина. В некоторых штаммах отсутствуют метионин и гистидин. [c.359]


    Ясно, что если мы имеем дело с трипептидами, то для однозначного установления аминокислотной последовательности достаточно первых двух этапов. При расшифровке строения более длинных пептидов весьма полезным оказывается реактив Эдмана. Последовательная, в несколько этапов, идентификация аминокислот с N-конца наряду с выяснением аминокислотного состава пептида и природы С-концевой аминокислоты в ряде случаев оказывается достаточной для установления аминокислотной последовательности в пептидах, содержащих от 8 до 10 аминокислот. Аналогичные исследования, правда по большей части не столь успешные, можно проводить также с помощью лейцинаминопептидазы и карбоксипептидазы. [c.91]

    В конце 40-х — начале 50-х годов нашего века химикам удалось обстоятельно проанализировать с помощью метода бумажной хроматографии смеси аминокислот, полученные при расщеплении ряда белков. В результате удалось установить общее число остатков каждой аминокислоты, содержащихся в молекуле белка, однако порядок расположения аминокислот в полипептидной цепи при этом определить, естестве шо, было нельзя. Английский химик Фредерик Сенгер (род. в 1918 г.) изучал инсулин — белковый гормон, состоящий примерно из пятидесяти аминокислот, распределенных между двумя взаимосвязанными пол и пептидными цепями. Сенгер расщепил молекулу на несколько более коротких цепей и проанализировал каждую из них методом бумажной хроматографии. Восемь лет продолжалась кропотливая работа по складыванию мозаики , но к 1953 г. был установлен точный порядок расположения аминокислот в молекуле инсулина. Позднее таким же способом было установлено детальное строение даже больших молекул белка [c.130]

    Другим важным вопросом при исследовании строения белков и полипептидов является вопрос о природе аминокислоты, содержащей свободную аминогруппу и расположенной на конце или в середине цепи. Для решения этого вопроса применяется динитрофенильный метод, представленный схемой [c.338]

    Метод изоморфного замещения. Впервые метод изоморфного замещения — еще более эффективный, чем метод тяжелого атома, — был применен Перутцем в 1954 г. при исследовании гемоглобина. В течение четырех последующих лет с помощью этого метода удалось установить контуры полипептидной цепи в мио-глобине, а еще через 6 лет были описаны многие детали строения этой молекулы, в частности установлена последовательность аминокислот на больших участках полипептидной цепи. Эти результаты рассмотрены в конце настоящей главы. [c.260]


    Определение концевых групп. Особое значение для выяснения строения пептидов имеет определение аминокислот, расположенных на концах полипептидной цепи. Если у какого-нибудь пептида или белка найдена одна единственная аминокислота в качестве Ы- или С-концевой группы, то с очень большой вероятностью можно считать его однородным соединением. [c.384]

    Дальнейшие структурные исследования белка, а также основополагающие работы Т. Курциуса по синтезу пептидов привели в коице концов к формулированию (1902) пептидной гипотезы, согласно которой белки построены из аминокислот, соединенных пептидными связями —СО—N4—, Пептидная теория (Э. Фишер и В. Гофмейстер) получила полное подтверждение в дальнейших исследованиях. Изучение строения белков было поставлено иа прочную научную основу. [c.26]

    Порядок чередования отдельных остатков аминокислот в цепи может быть установлен последовательным отщеплением с обоих концов молекулы отдельных аминокислот, которые предварительно метятся превращением в какие-либо устойчивые к гидролизу производные, например в производные динитроанилина. Этим путем было установлено строение нескольких наиболее простых белков (инсулина, гемоглобина, рибонуклеазы и др.), молекулы которых построены из нескольких десятков (в некоторых случаях больше сотни) различных и одинаковых молекул а-аминокислот и имеют молекулярную массу 5000—15000. Эти химические данные дополняются результатами рентгеноструктурного анализа. Для многих более сложных белков установлен порядок чередования нескольких аминокислотных звеньев с каждого конца молекулы. [c.298]

    Выделенная таким образом аминокислота может быть идентифицирована. Весь процесс можно повторить с деградированным пептидом и тогда будет установлено строение следующей аминокислоты с карбоксильного конца молекулы полипептида [c.338]

    Детальное изучение показало, что для каждой аминокислоты требуется своя Р-РНК. Иными словами, если в биосинтезе белков участвуют 20 аминокислот, то гиалоплазма клетки должна содержать 20 различных Р-РНК. С другой стороны, установлено, что для выполнения свое функции переноса Р-РНК имеет строго онределенное строение обоих концов молекулы, причем эти концы у всех Р-РНК совершенно одинаковы. Отсюда следует, что специфика отдельных Р-РНК (способность присоединить ту или иную аминокислоту) связана с их нуклеотидным составом и последовательностью нуклеотидов вдоль цепи молекулы. [c.84]

    С химической точки зрения гормоны гипофиза представляют собой либо олигопептиды, например окситоцин и вазопрессин, о которых сказано выше, либо полипептиды со сравнительно небольшими молекулами, состоящими из одной полипептидной цепи. Адренокортикотропный гормон (АКТГ), называемый также кортикотро-пином, выделенный из гипофиза свиньи, был разделен в процессе операций очистки хроматографическим путем и другими методами на два компонента — кортикотро-пины А иВ (применяют также обозначения аир). Кортикотропин Р имеет молекулярный вес 4567, установленный методом центрифугирования. При номощи методов, впервые примененных к инсулину, установлено, что препараты А, а и р являются тождественными или очень сходными соединениями, обладающими полипептидной цепью, состоящей из 39 аминокислотных остатков, происходящих из 15 аминокислот, с серином у аминного конца и фенилаланином у карбоксильного конца. Была определена последовательность всех аминокислот, причем найдено, что препараты, выдо-ленные из различных животных, несколько отличаются друг от друга строением определенных участков цепи. Кортикотропин В образуется из кортикотропина А в результате потери 11 аминокислотных остатков от карбоксильного конца таким образом, он содержит в своей цепи всего 28 аминокислот. [c.448]

    Изображая строение грамицидина С, мы воспользовались принятыми в химии белков сокращенными обозначениями аминокислот (лей — лейцин фал — фенилаланин про — пролин вал — валин орн — орнитин). При такой записи условно считают, что начало сокращенного обозначения соответствует аминному концу молекулы аминокислоты, конец—ее кислотному концу, т. е. обозначение — вал представляет собой группировку  [c.440]

    Начальный этап в изучении первичной структуры пептида или белка состоит в определении N-концевой аминокислоты, т. е. той, которая находится на конце цепи и имеет свободную а-аминную группу. Ее можно при помощи специальных методов отщепить и точно идентифицировать. Затем то же самое можно повторить с концевой группой, оставшейся на конце цепи после отщепления первой. Повторяя операции несколько раз и осуществляя ступенчатый гидролиз цепи, возможно определить в нем аминокислотную последовательность с N-конца. Возможно подобное определение и аминокислоты со свободной а-СООН-группой (С-конце-вой), но при помощи иных методов. Этим способом можно определить лишь по несколько звеньев с обоих концов, так как повторные операции удается повторять не более чем 5— 12 раз. Однако таким путем не трудно расшифровывать строение пептидов — продуктов гидролиза белка. [c.24]


    ХИМОЗИН (реннин, сычужный фермент), фермент класса гидролаз, относится к эндопентидазам. Мол. масса бычьего X. 35 600, р1 4,6, оптим. каталитич. активность нри pH 3,5—4,0. Образуется в слизистой желудка телят из предшественника (нрохимозина) отщеплением 42 членного пептида с N-конца. По строению активного центра относится к ферментам тина пепсина. Катализирует гидролиз белков и пептидов по связям, образованными нреим. гидрофобными аминокислотами. Ингибируется пепстатином и ингибиторами, содержащими диазо- или эпоксигругигу. Использ. в сыроделии. [c.653]

    Все изложенное показывает, с какими трудностями связано изучение строения белковых веществ. Однако за несколько последних десятилетий наука в этом направлении значительно продвинулась впе )ед. Разработаны методы, дающие возможность устанавливать аминокислотный состав белков, определять, какие именно аминокислоты находятся на концах полипептидных цепей того или иного белка. Для некоторых природных гюлипептндов, родственных белкам, и для некоторых белков, имеющих важное биологическое значение, не только точно установлено, из каких аминокислот они построены, но и выяснена последовательность, в которой эти аминокислоты соединяются друг с другом. [c.293]

    Белок TF 1П А был первым эукариотическим регуляторным полипептидом транскрипции с известной аминокислотной последовательностью, для которого удалось построит доменную структурную модель. В этом белке выявлены 9 повторяющихся, но отличающихся друг от друга доменов — пальцев , каждый из которых включает около 30 аминокислот. Домены содержат инвариантные-участки, включающие два цистеиновых и два гистидиновых остатка, связанных с ионом цинка (рис. 115). Концы разных пальцев (петли) несут варьирующие аминокислотные остатки, среди которых встречаются положительно заряженные, которые, по-видимому, способны легко взаимодействовать с ДНК. Как оказалось, подобная структура регуляторного белка закодирована в ряде других генов, кодирующих регуляторные белки эукариот. Так, ген Kruppel (калека), контролирующий развитие дрозофилы, кодирует белок, содержащий четыре подобных домена. Такие домены обнаружены и в белках — рецепторах гормонов. Предполагается, что выступающие связывающиеся с ДНК разные пальцы, соединенные друг с другом гибкими мостиками, осуществляют сразу несколько контактов с ДНК. Такая модель строения TF П1 А позволяет предполо- [c.211]

    N-Koнцe вoй лизин дает а,е- бис-динитрофенильиое производное лизин, расположенный в середине цепи или на С-конце, дает е-моноди-нитрофенильное производное. Фенольная группа тирозина и имино-группа гистидина также реагируют с динитрофторбензолом, но образующиеся производные расщепляются в условиях кислотного гидролиза пептидной связи. Для определения последовательности аминокислот белок подвергают частичному гидролизу и определяют строение образовавшихся ди- и трипептидов анализом концевых групп. Если в гидролизате охарактеризованы все возможные дипептиды, то последовательность аминокислот в белке может быть однозначно определена без дальнейшего анализа концевых групп. [c.690]

    Белки. 1. Инсул ин. Молекулярный вес 6000. Строение установлено в 1952 г. Зангером и Таппи. Состоит из двух цепей А и В, соединенных двумя дисульфидными мостиками. Цепь А состоит из 21 аминокислотного остатка, с Ы-концевой и С-концевой аминокислотами—-глицином и аспарагином. Цепь В содержит 30 аминокислотных остатков с фенилаланином на Ы-конце и аланином на С-конце цепи. Это первый белок, строение которого расшифровано полностью. В процессе этого исследования Зангером был разработан (комплекс методов, который послужил основой для всех последующих исследований строения белков. [c.527]

    Примечательно, что и сам Э. Фишер не считал свою пептидную теорию полностью адекватной реальному химическому строению белковых молекул. Он допускал присутствие в структуре белков дикетопиперазиновых циклов, а также существование большого числа разнообразных химических связей между функциональными гругшами боковых цепей аминокислотных остатков. Э. Фишер представлял ферменты (которые он едва ли не единственный уже в конце XIX в. считал белками или близкими к ним) в виде "специальных машин сложнейшей конструкции", функциональная специфичность которых обусловлена взаимодействиями по принципу "замка и ключа". Поскольку он, как и его современники, исключительное значение в формообразовании белков придавал только валентным связям, то пространственное строение белковой молекулы представлял себе в виде глобулярной структуры, в которой свернутая пептидная цепь, включающая одиночные дикетопиперазиновые циклы, дополнительно сцементирована сложной сетью радиальных химических связей между боковыми цепями аминокислот. "Я почти не сомневаюсь в том, - писал Фишер, - что органический мир, обнаруживающий колоссальное разнообразие в морфологическом отношении, в химическом отношении, в частности в построении белков, далеко не подчиняется тем ограничениям, которые предписывает ему наше неполное знание" [4. С. 356]. Следовательно, теория Фишера была строгой только в констатации значительного содержания в белковых молекулах полипептидных фрагментов. Положение о полностью линейном полипептидном строении белков могло быть тогда лишь гипотетическим. Однако такой гипотезы [c.64]

    Последовательность аминокислотных остатков в полипептид-,ной цепи называется ее первичной структурой. Определение пер.-вичной структуры производится путем частичного гидролиза белка с помощью специфических протеаз, катализирующих расщепление пептидной связи лишь между определенными остатками. Так, трипсин атакует лишь те пептидные связи, которые образованы СО-группами остатков основных аминокислот — Apr или Лиз. В результате образуется смесь коротких полипептидных цепей, олигомеров. Такие короткие цепи называются пептидами. Их исследование производится посредством химических и физико-химических методов (хроматография, масс-спектроскопия). Воздействуя другим ферментом, можно разрезать белок по другим связям, получить смесь других пептидов. N- и С-конце-вые остатки белка (см. стр. 68) определяются в результате их химической модификации, предшествующей частичному гидролизу. Зная строение пептидов, полученных при специфическом расщеплении различными ферментами, можно установить первичную структуру белка. Допустим, что белковая цепь имеет структуру [c.73]

    Конструкция полиамидной цепи одинакова для всего много образия пептидов и белков. Эта цепь имеет неразветвленно строение и состоит из чередующихся амидных (СОЫН) и мети новых (СН) групп. Один конец цепи, на котором находите аминокислота со свободной ЫНа-группой, называют N-кo н ц о м другой, на котором находится аминокислота со свободной СООН группой, — С-к о н ц о м. Пептидные и белковые цепи принято за писывать с Ы-конца. [c.344]

    Исследование первичной структуры мнеломных белков было проведено в конце 60-х годов в лабораториях Р. Портера в Оксфорде и Дж. Эдельмана в Нью-Йорке. Характерной чертой строения молекул иммуноглобулинов является так называемая доменная структура. И легкие и тяжелые цепи упакованы в компактные домены, состоящие примерно из НО аминокислотных остатков и содержащие внутримолекулярные дисульфидные связи (рис. 116). Легкие (каждая содержит около 220 аминокислот) и тяжелые (каж- [c.212]

    Антибиотики рассматриваемой группы объединяет одинаковый план строения молекулы. В ее основе лежит пептид из 5-6 аминокислот, большинство из которых имеют необычную (небелковую) структуру. С-концевая аминокислота содержит серу в составе битиазольной или тиазолтиазолидиновой группировки и является основным хромофором молекулы. Пептид гликозилирован по имеющейся в нем гидроксильной группе оксигистидина общим для всех антибиотиков дисахаридом и амидирован на С-конце другим обязательным структурным элементом молекулы — так называемым концевым амином. Строение этого амина, однако, различно для входящих в данную группу антибиотиков. Большинство из них несколько отличается друг от друга также деталями структуры аминокислот, входящих в пептидную цепь, но строение [c.187]

    Макромолекулы кератина построены из остатков девятнадцати различных аминокислот, связанных между собой пептидными связями — ONH—. На концах цепей с одной стороны имеется аминогруппа, с другой — карбоксильная группа. Чередование и последовательность расположения отдельных аминокислотных остатков в макромолекуле кератина полностью не известны. Однако имеются вполне достоверные сведения о строении отдельных фрагментов таких цепей. Так, установлено строение участка полипептидной цепи, построенной из остатков аргинина, треонина, фенилаланина и серина. [c.15]

    ПРОИНСУЛИН, белок — предшественник инсулина. Молекула включает 81—86 аминокислотных остатков (в зависимости от вида животного) мол. м. 9000. На N-конце молекулы располагается В-цепь инсулина, на С-конце — А-цепь. Цепи инсулина соединены т.н. С-пептидом, построенным из 27—33 аминокислотных остатков. Общая схема строения молекулы НзМ—В-цепь—Арг—Арг—С-пеп-тид—Лиз—Лиз—А-цепь—СООН (буквенные обозначения см. в ст. а-Аминокислоты). Видовые различия в П. наиб, выражены на участке С-пептида. П. обеспечивает правильное замыкание дисульфидных связей при образовании двухцепочечной структуры инсулипа. Превращ. П.- в инсулин в 0-клетках островков поджелудочной железы осуществляется специфическими ферментами, при этом от П. отделяется С-пептид. [c.480]

    Изучение белков, содержащихся в плазматической мембране эритроцитов, позволило сформулировать новые представления о строении мембран. Возникло, в частности, предположение о том, что по крайней мере некоторые мембраны имеют скелет . В мембране эритроцита человека содержится пять главных белков и большое число минорных. Большинство мембранных белков-гликопротеины. К интегральным белкам в мембране эритроцита относится гликофорин ( переносчик сахара ). Его молекулярная масса составляет 30000 гли-кофорин содержит 130 аминокислотных остатков и множество остатков сахаров, на долю которых приходится около 60% всей молекулы. На одном из концов полипептидной цепи располагается гидрофильная голова сложного строения, включающая в себя до 15 олигосахарид-ньк цепей, каждая из которых состоит приблизительно из 10 остатков сахаров. На другом конце полипептидной цепи гликофорина находится большое число остатков глутаминовой и аспарагиновой кислот (рис. 12-20), которые при pH 7,0 несут отрицательный заряд. В середине молекулы, между двумя гидрофильными концами, располагается участок полипептидной цепи, содержащий около 30 гидрофобных аминокислотных остатков. Богатый сахарами конец молекулы гли-1Кофорина локализуется на внешней поверхности мембраны эритроцита, выступая из нее в виде кустика. Считают, что расположенный в середине молекулы гликофорина гидрофобный участок проходит сквозь липидный бислой, а полярный конец с отрицательно заряженными остатками аминокислот погружен в цитозоль. Богатая сахарами голова гликофорина содержит антигенные детерминанты, определяющие группу крови (А, В или О). Кроме того, на ней имеются участки, связывающие некоторые патогенные вирусы. [c.347]

    При образовании названий пептидов в конце ставят историческое название той аминокислоты, которая сохраняет свою карбоксильную группу. В данном случае остаток глицина, или радикал его глицил, как бы замещает атом водорода в аминогруппе р-аланина. Отсюда по общим правилам выводят название полученного дипептида глицилаланин. Совсем другое строение будет иметь дипептид аланилглицин  [c.151]

    Многие десятилетия, вплоть до настоящего времени, протеолитические ферменты принято было делить на две группы протеиназы и пептидазы. Полагали, что протеиназы расщепляют белки, а полученные осколки (полипептиды) разрушаются пептидазами до аминокислот. Постепенно выяснилось, что протеиназы могут расщеплять и низкомолекулярные субстраты, но лишь определенного строения, соответствующего специфичности данного фермента. Возникло новое деление — на эндопептидазы, которые способны гидролизовать как концевые пептидные связи, так и те, которые расположены внутри белковых цепей, в их средних участках, и экзопептидазы, разрывающие связи на концах пептидных цепей. Эта классификация широкого использования не [c.238]


Смотреть страницы где упоминается термин концевых аминокислот строение: [c.81]    [c.158]    [c.653]    [c.370]    [c.628]    [c.239]    [c.295]    [c.193]    [c.593]    [c.355]    [c.185]    [c.9]    [c.329]    [c.193]   
Химия природных соединений (1960) -- [ c.519 , c.546 ]




ПОИСК





Смотрите так же термины и статьи:

концевых аминокислот



© 2025 chem21.info Реклама на сайте